Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Big Data ; 7: 1371518, 2024.
Article in English | MEDLINE | ID: mdl-38946939

ABSTRACT

Introduction: Hyperdimensional Computing (HDC) is a brain-inspired and lightweight machine learning method. It has received significant attention in the literature as a candidate to be applied in the wearable Internet of Things, near-sensor artificial intelligence applications, and on-device processing. HDC is computationally less complex than traditional deep learning algorithms and typically achieves moderate to good classification performance. A key aspect that determines the performance of HDC is encoding the input data to the hyperdimensional (HD) space. Methods: This article proposes a novel lightweight approach relying only on native HD arithmetic vector operations to encode binarized images that preserves the similarity of patterns at nearby locations by using point of interest selection and local linear mapping. Results: The method reaches an accuracy of 97.92% on the test set for the MNIST data set and 84.62% for the Fashion-MNIST data set. Discussion: These results outperform other studies using native HDC with different encoding approaches and are on par with more complex hybrid HDC models and lightweight binarized neural networks. The proposed encoding approach also demonstrates higher robustness to noise and blur compared to the baseline encoding.

2.
Front Neurosci ; 18: 1360300, 2024.
Article in English | MEDLINE | ID: mdl-38680445

ABSTRACT

Spiking neural network (SNN) distinguish themselves from artificial neural network (ANN) because of their inherent temporal processing and spike-based computations, enabling a power-efficient implementation in neuromorphic hardware. In this study, we demonstrate that data processing with spiking neurons can be enhanced by co-learning the synaptic weights with two other biologically inspired neuronal features: (1) a set of parameters describing neuronal adaptation processes and (2) synaptic propagation delays. The former allows a spiking neuron to learn how to specifically react to incoming spikes based on its past. The trained adaptation parameters result in neuronal heterogeneity, which leads to a greater variety in available spike patterns and is also found in the brain. The latter enables to learn to explicitly correlate spike trains that are temporally distanced. Synaptic delays reflect the time an action potential requires to travel from one neuron to another. We show that each of the co-learned features separately leads to an improvement over the baseline SNN and that the combination of both leads to state-of-the-art SNN results on all speech recognition datasets investigated with a simple 2-hidden layer feed-forward network. Our SNN outperforms the benchmark ANN on the neuromorphic datasets (Spiking Heidelberg Digits and Spiking Speech Commands), even with fewer trainable parameters. On the 35-class Google Speech Commands dataset, our SNN also outperforms a GRU of similar size. Our study presents brain-inspired improvements in SNN that enable them to excel over an equivalent ANN of similar size on tasks with rich temporal dynamics.

3.
Neural Comput ; 35(12): 2006-2023, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37844327

ABSTRACT

Hyperdimensional computing (HDC) has become popular for light-weight and energy-efficient machine learning, suitable for wearable Internet-of-Things devices and near-sensor or on-device processing. HDC is computationally less complex than traditional deep learning algorithms and achieves moderate to good classification performance. This letter proposes to extend the training procedure in HDC by taking into account not only wrongly classified samples but also samples that are correctly classified by the HDC model but with low confidence. We introduce a confidence threshold that can be tuned for each data set to achieve the best classification accuracy. The proposed training procedure is tested on UCIHAR, CTG, ISOLET, and HAND data sets for which the performance consistently improves compared to the baseline across a range of confidence threshold values. The extended training procedure also results in a shift toward higher confidence values of the correctly classified samples, making the classifier not only more accurate but also more confident about its predictions.

4.
Front Neurosci ; 16: 1023470, 2022.
Article in English | MEDLINE | ID: mdl-36389242

ABSTRACT

A liquid state machine (LSM) is a biologically plausible model of a cortical microcircuit. It exists of a random, sparse reservoir of recurrently connected spiking neurons with fixed synapses and a trainable readout layer. The LSM exhibits low training complexity and enables backpropagation-free learning in a powerful, yet simple computing paradigm. In this work, the liquid state machine is enhanced by a set of bio-inspired extensions to create the extended liquid state machine (ELSM), which is evaluated on a set of speech data sets. Firstly, we ensure excitatory/inhibitory (E/I) balance to enable the LSM to operate in edge-of-chaos regime. Secondly, spike-frequency adaptation (SFA) is introduced in the LSM to improve the memory capabilities. Lastly, neuronal heterogeneity, by means of a differentiation in time constants, is introduced to extract a richer dynamical LSM response. By including E/I balance, SFA, and neuronal heterogeneity, we show that the ELSM consistently improves upon the LSM while retaining the benefits of the straightforward LSM structure and training procedure. The proposed extensions led up to an 5.2% increase in accuracy while decreasing the number of spikes in the ELSM up to 20.2% on benchmark speech data sets. On some benchmarks, the ELSM can even attain similar performances as the current state-of-the-art in spiking neural networks. Furthermore, we illustrate that the ELSM input-liquid and recurrent synaptic weights can be reduced to 4-bit resolution without any significant loss in classification performance. We thus show that the ELSM is a powerful, biologically plausible and hardware-friendly spiking neural network model that can attain near state-of-the-art accuracy on speech recognition benchmarks for spiking neural networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...