Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Transm (Vienna) ; 130(5): 723-734, 2023 05.
Article in English | MEDLINE | ID: mdl-36906867

ABSTRACT

We aim to investigate early developmental trajectories of the autonomic nervous system (ANS) as indexed by the pupillary light reflex (PLR) in infants with (i.e. preterm birth, feeding difficulties, or siblings of children with autism spectrum disorder) and without (controls) increased likelihood for atypical ANS development. We used eye-tracking to capture the PLR in 216 infants in a longitudinal follow-up study spanning 5 to 24 months of age, and linear mixed models to investigate effects of age and group on three PLR parameters: baseline pupil diameter, latency to constriction and relative constriction amplitude. An increase with age was found in baseline pupil diameter (F(3,273.21) = 13.15, p < 0.001, [Formula: see text] = 0.13), latency to constriction (F(3,326.41) = 3.84, p = 0.010, [Formula: see text] = 0.03) and relative constriction amplitude(F(3,282.53) = 3.70, p = 0.012, [Formula: see text] = 0.04). Group differences were found for baseline pupil diameter (F(3,235.91) = 9.40, p < 0.001, [Formula: see text] = 0.11), with larger diameter in preterms and siblings than in controls, and for latency to constriction (F(3,237.10) = 3.48, p = 0.017, [Formula: see text] = 0.04), with preterms having a longer latency than controls. The results align with previous evidence, with development over time that could be explained by ANS maturation. To better understand the cause of the group differences, further research in a larger sample is necessary, combining pupillometry with other measures to further validate its value.


Subject(s)
Autism Spectrum Disorder , Premature Birth , Child , Female , Humans , Infant , Infant, Newborn , Reflex, Pupillary/physiology , Follow-Up Studies , Autonomic Nervous System
2.
PLoS Biol ; 17(12): e3000524, 2019 12.
Article in English | MEDLINE | ID: mdl-31805039

ABSTRACT

Social transmission of freezing behavior has been conceived of as a one-way phenomenon in which an observer "catches" the fear of another. Here, we use a paradigm in which an observer rat witnesses another rat receiving electroshocks. Bayesian model comparison and Granger causality show that rats exchange information about danger in both directions: how the observer reacts to the demonstrator's distress also influences how the demonstrator responds to the danger. This was true to a similar extent across highly familiar and entirely unfamiliar rats but is stronger in animals preexposed to shocks. Injecting muscimol in the anterior cingulate of observers reduced freezing in the observers and in the demonstrators receiving the shocks. Using simulations, we support the notion that the coupling of freezing across rats could be selected for to more efficiently detect dangers in a group, in a way similar to cross-species eavesdropping.


Subject(s)
Fear/physiology , Fear/psychology , Freezing Reaction, Cataleptic/physiology , Animal Communication , Animals , Bayes Theorem , Behavior, Animal/physiology , Gyrus Cinguli/drug effects , Gyrus Cinguli/physiology , Male , Muscimol/pharmacology , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...