Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Acad Radiol ; 16(4): 464-76, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19268859

ABSTRACT

RATIONALE AND OBJECTIVES: The aim of this study was to assess the performance of a newly developed dual-energy (DE) chest radiographic system in comparison to digital radiographic (DR) imaging in the detection and characterization of lung nodules. MATERIALS AND METHODS: An experimental prototype was developed for high-performance DE chest imaging, with total dose equivalent to a single posterior-anterior DR image. Projections at low and high peak kilovoltage were used to decompose DE soft tissue and bone images. A cohort of 55 patients (31 men, 24 women; mean age, 65.6 years) was drawn from an ongoing trial involving patients referred for percutaneous computed tomography-guided biopsy of suspicious lung nodules. DE and DR images were acquired of each patient prior to biopsy. Image quality was assessed by means of human observer tests involving five radiologists independently rating the detection and characterization of lung nodules on a nine-point scale. Results were analyzed in terms of the fraction of cases at or above a given rating, and statistical significance was evaluated using Wilcoxon's signed-rank test. Performance was analyzed for all cases pooled as well as by stratification of nodule size, density, lung region, and chest thickness. RESULTS: The studies demonstrated a significant performance advantage for DE imaging compared to DR imaging (P < .001) in the detection and characterization of lung nodules. DE imaging improved the detection of both small and large nodules and exhibited the most significant improvement in regions of the upper lobes, where overlying anatomic noise (ribs and clavicles) are believed to reduce nodule conspicuity on DR imaging. CONCLUSIONS: DE imaging outperformed DR imaging overall, particularly in the detection of small, solid nodules. DE imaging also performed better in regions dominated by anatomic noise, such as the lung apices. The potential for improved nodule detection and characterization at radiation doses equivalent to DR imaging is encouraging and could augment the broader use of DE imaging. Future studies will extend the initial cohort and rating scale tests to a larger cohort evaluated by receiver-operating characteristic analysis and will evaluate DE imaging in comparison and as an adjuvant to low-dose computed tomography.


Subject(s)
Lung Neoplasms/diagnostic imaging , Radiography, Dual-Energy Scanned Projection/instrumentation , Radiography, Thoracic/instrumentation , Solitary Pulmonary Nodule/diagnostic imaging , Tomography, X-Ray Computed/instrumentation , Adult , Aged , Aged, 80 and over , Cohort Studies , Equipment Design , Equipment Failure Analysis , Female , Humans , Male , Middle Aged , Pilot Projects , Reproducibility of Results , Sensitivity and Specificity
2.
Eur Radiol ; 17(4): 1089-100, 2007 Apr.
Article in English | MEDLINE | ID: mdl-16964489

ABSTRACT

To evaluate increased image latitude post-processing of digital projection radiograms for the detection of pulmonary nodules. 20 porcine lungs were inflated inside a chest phantom, prepared with 280 solid nodules of 4-8 mm in diameter and examined with direct radiography (3.0x2.5 k detector, 125 kVp, 4 mAs). Nodule position and size were documented by CT controls and dissection. Four intact lungs served as negative controls. Image post-processing included standard tone scales and increased latitude with detail contrast enhancement (log-factors 1.0, 1.5 and 2.0). 1280 sub-images (512x512 pixel) were centred on nodules or controls, behind the diaphragm and over free parenchyma, randomized and presented to six readers. Confidence in the decision was recorded with a scale of 0-100%. Sensitivity and specificity for nodules behind the diaphragm were 0.87/0.97 at standard tone scale and 0.92/0.92 with increased latitude (log factor 2.0). The fraction of "not diagnostic" readings was reduced (from 208/1920 to 52/1920). As an indicator of increased detection confidence, the median of the ratings behind the diaphragm approached 100 and 0, respectively, and the inter-quartile width decreased (controls: p<0.001, nodules: p=0.239) at higher image latitude. Above the diaphragm, accuracy and detection confidence remained unchanged. Here, the sensitivity for nodules was 0.94 with a specificity from 0.96 to 0.97 (all p>0.05). Increased latitude post-processing has minimal effects on the overall accuracy, but improves the detection confidence for sub-centimeter nodules in the posterior recesses of the lung.


Subject(s)
Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Radiographic Image Enhancement , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/diagnosis , Animals , Observer Variation , Phantoms, Imaging , Radiographic Image Enhancement/methods , Sensitivity and Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...