Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(2): e9791, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36818533

ABSTRACT

The ability to control one's vocal production is a major advantage in acoustic communication. Yet, not all species have the same level of control over their vocal output. Several bird species can interrupt their song upon hearing an external stimulus, but there is no evidence how flexible this behavior is. Most research on corvids focuses on their cognitive abilities, but few studies explore their vocal aptitudes. Recent research shows that crows can be experimentally trained to vocalize in response to a brief visual stimulus. Our study investigated vocal control abilities with a more ecologically embedded approach in rooks. We show that two rooks could spontaneously coordinate their vocalizations to a long-lasting stimulus (the sound of their small bathing pool being filled with a water hose), one of them adjusting roughly (in the second range) its vocalizations as the stimuli began and stopped. This exploratory study adds to the literature showing that corvids, a group of species capable of cognitive prowess, are indeed able to display good vocal control abilities.

2.
Insect Sci ; 29(2): 595-602, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34224203

ABSTRACT

Many animals consume the feces of their conspecifics. This allo-coprophagy can have benefits, such as access to nutrients and symbionts, but also risks for consumers, mainly due to direct contact with pathogens that develop on feces. In the European earwig Forficula auricularia, mothers and juveniles live in nests lined with their feces. This surprising habit allows juveniles to consume the feces of their siblings during family life and provides them with nutritional benefits when mothers provide low care. However, it was unclear whether earwig mothers also practice allo-coprophagy, and whether this behavior is motivated by their nutritional needs. Here, we set up four types of experimental families in which we manipulated the nutritional needs of mothers and/or juveniles and measured the effects on the production of feces by the juveniles, and the consumption of these feces by the mothers. Our results first show that fed juveniles produced more feces pellet in presence of fed compared to food-deprived mothers. We also found that, overall, about 50% of the mothers consumed juveniles feces. This consumption was both more likely and larger when the feces were produced by fed compared to food-deprived juveniles, while the proportion of feces pellets eaten was larger in food-deprived compared to fed mothers. Overall, our results reveal that allo-coprophagy involves every family member and suggest that it can have both nutritional and non-nutritional benefits for earwig mothers. Allo-coprophagy could thus favor the maintenance of mothers in the nest and, more generally, promote the early evolution of family life.


Subject(s)
Mothers , Animals , Feces , Female , Humans
3.
J Evol Biol ; 34(7): 1034-1045, 2021 07.
Article in English | MEDLINE | ID: mdl-33877702

ABSTRACT

The microbes residing within the gut of an animal host often increase their own fitness by modifying their host's physiological, reproductive and behavioural functions. Whereas recent studies suggest that they may also shape host sociality and therefore have critical effects on animal social evolution, the impact of the gut microbiota on maternal care remains unexplored. This is surprising, as this behaviour is widespread among animals, often determines the fitness of both juveniles and parents, and is essential in the evolution of complex animal societies. Here, we tested whether life-long alterations of the gut microbiota with rifampicin-a broad-spectrum antibiotic-impair pre- and post-hatching maternal care in the European earwig. Our results first confirm that rifampicin altered the mothers' gut microbial communities and indicate that the composition of the gut microbiota differs before and after egg care. Contrary to our predictions, however, the rifampicin-induced alterations of the gut microbiota did not modify pre- or post-hatching care. Independent of maternal care, rifampicin increased the females' faeces production and resulted in lighter eggs and juveniles. By contrast, rifampicin altered none of the other 21 physiological, reproductive and longevity traits measured over the 300 days of a female's lifetime. Overall, these findings reveal that altering the gut microbiota with a large spectrum antibiotic such as rifampicin does not necessarily affect host sociality. They also emphasize that not all animals have evolved a co-dependence with their microbiota and call for caution when generalizing the central role of gut microbes in host biology.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Anti-Bacterial Agents , Female , Rifampin , Social Behavior
4.
Chemosphere ; 258: 127383, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32559491

ABSTRACT

The application of pesticides typically leads to lethal and sublethal exposure of non-target insects. Whereas our current understanding of these sublethal effects typically focuses on reproductive and physiological parameters, recent works emphasize that sublethal effects on behaviors such as maternal care could be of major importance in non-target species. However, it remained unknown whether these sublethal effects occur in insects. Here, we tested if exposure to sublethal doses of deltamethrin - a pyrethroid insecticide commonly used in crops - alters the expression of maternal egg care in females of the European earwig Forficula auricularia, a predator insect and pest control. Our results first reveal that deltamethrin exposure impaired the expression of three forms of maternal egg care: It decreased the likelihood of mothers to gather their otherwise scattered clutch of eggs, increased the time during which the female abandoned the clutch after a predator attack and reduced egg grooming duration. These sublethal effects did not reflect a lower activity of deltamethrin-exposed females, as these females increased their expression of self-grooming, and deltamethrin exposure did not affect females' exploration and mobility. Finally, we found that the negative effects of deltamethrin on egg care did not modify egg development, hatching rate and juvenile weight, possibly due to the transient effects of deltamethrin on maternal behaviors. Overall, our results reveal that sublethal exposure to a pesticide may diminish maternal egg care in a natural pest control and call for the integration of this measurement in assays on pesticides application.


Subject(s)
Behavior, Animal/drug effects , Insecta/drug effects , Insecticides/toxicity , Maternal Behavior/drug effects , Nitriles/toxicity , Ovum/growth & development , Pyrethrins/toxicity , Animals , Dose-Response Relationship, Drug , Female , Insecta/physiology , Reproduction/drug effects
5.
Curr Opin Insect Sci ; 28: 1-7, 2018 08.
Article in English | MEDLINE | ID: mdl-30551759

ABSTRACT

Mounting defences against pathogens is a necessity for all animals. Although these defences have long been known to rely on individual processes such as the immune system, recent studies have emphasized the importance of social defences for group-living hosts. These defences, called social immunity, have been mostly studied in eusocial insects such as bees, termites and ants, and include, for instance, mutual cleaning and waste management. Over the last few years, however, a growing number of works called for a broader exploration of social immunity in non-eusocial species. In this review, we summarize the rationales of this call and examine why it may provide major insights into our current understanding of the role of pathogens in social evolution. We start by presenting the original conceptual framework of social immunity developed in eusocial insects and shed light on its importance in highly derived social systems. We then clarify three major misconceptions possibly fostered by this original framework and demonstrate why they made necessary the shift towards a broader definition of social immunity. Because a broader definition still needs boundaries, we finally present three criteria to discriminate what is a form of social immunity, from what is not. Overall, we argue that studying social immunity across social systems does not only provide novel insights into how pathogens affect the evolution of eusociality, but also of the emergence and maintenance of social life from a solitary state. Moreover, this broader approach offers new scopes to disentangle the common and specific anti-pathogen defences developed by eusocial and non-eusocial hosts, and to better understand the dependent and independent evolutionary drivers of social and individual immunity.


Subject(s)
Biological Evolution , Host-Pathogen Interactions/immunology , Insecta/immunology , Animals , Behavior, Animal , Insecta/microbiology , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...