Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lipids ; 57(1): 33-44, 2022 01.
Article in English | MEDLINE | ID: mdl-34741309

ABSTRACT

Jacaric acid, a conjugated linolenic acid (CLNA) present in jacaranda oil (JO), is considered a potent anticarcinogenic agent. Several studies have focused on its biological effects, but the metabolism once consumed is not clear yet. The aim of this work was to evaluate the effects of two different daily doses of JO on serum parameters and fatty acid (FA) profile of mice tissues after 4 weeks of feeding. No significant changes on body weight gain, food intake, or tissue weight were determined after 0.7 or 2 ml/kg of JO supplementation compared to control animals. Significantly lower blood low-density lipoproteins-cholesterol (20 mg/dl) and glucose (~147-148 mg/dl) levels were detected in both oil-treated groups compared to control (31.2 and 165 mg/dl, respectively). Moreover, jacaric acid was partially converted into cis9, trans11 conjugated linoleic acid (CLA) and thus further incorporated into tissues. Liver evidenced the highest total conjugated fatty acid content (1.1%-2.2%), followed by epididymal (0.7%-1.9%) and mesenteric (1.4%-1.8%) fat. Lower saturated and higher unsaturated fatty acid content was detected in both oil-treated groups compared to control. Our results support the safety of JO and its potential application with a functional or nutraceutical propose, by increasing human CLNA consumption and further availability of CLA.


Subject(s)
Fatty Acids , Linoleic Acids, Conjugated , Animals , Biological Availability , Biomarkers/metabolism , Dietary Supplements , Fatty Acids/metabolism , Linoleic Acids, Conjugated/metabolism , Liver/metabolism , Mice , alpha-Linolenic Acid/metabolism
2.
J Med Food ; 14(4): 420-7, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21370968

ABSTRACT

The objective of this study was to determine the influence of administration of buffalo dairy products on lipid content and conjugated linoleic acid (CLA) incorporation on liver and intestine of mice. Buffalo cheeses were selected according to nutritional properties and CLA content. Cheeses were previously manufactured using as adjunct culture bacteria with probiotic or technological properties. BALB/c mice were fed for 28 days, and then a single dose of 1,2-dimethylhydrazine (DMH) as oxidant agent was administered before the influence of diet and DMH on antioxidant status in tissues was evaluated. Mice fed buffalo cheese showed the highest body weight gain (P < .05). Polyunsaturated fatty acid (PUFA) content in foods was very different, but total PUFA incorporation was similar in mouse tissues. CLA was only detected in fat tissues of mice fed dairy products, with cis-9, trans-11 being the major isomer. A higher linolenic (C(18:3)) acid content was found in tissues of mice fed commercial diet (control group), and it was partially replaced by CLA in groups receiving buffalo milk or cheese. Lipoperoxides (thiobarbituric acid-reactive substances) were higher in tissues of the control group with or without DMH administration, and DMH had a cytotoxic effect on colon cells (P < .05). Superoxide dismutase (SOD) and catalase activities in liver and intestine were similar among animals, with a slight increase of SOD detected after DMH treatment. Consumption of buffalo dairy products did not affect the oxidative status of mice tissues even after DMH application. In the present study, a protective effect of buffalo cheese and milk on intestine cells was determined.


Subject(s)
Cheese/analysis , Functional Food , Intestinal Mucosa/metabolism , Linoleic Acids, Conjugated/analysis , Liver/metabolism , 1,2-Dimethylhydrazine/pharmacology , Administration, Oral , Animals , Buffaloes , Chromatography, High Pressure Liquid , Female , Mice , Mice, Inbred BALB C , Oxidative Stress , Probiotics/pharmacology , Thiobarbituric Acid Reactive Substances/analysis , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...