Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 974048, 2022.
Article in English | MEDLINE | ID: mdl-36507383

ABSTRACT

Tomato is a horticultural crop of high economic and nutritional value. Suboptimal environmental conditions, such as limited water and nutrient availability, cause severe yield reductions. Thus, selection of genotypes requiring lower inputs is a goal for the tomato breeding sector. We screened 10 tomato varieties exposed to water deficit, low nitrate or a combination of both. Biometric, physiological and molecular analyses revealed different stress responses among genotypes, identifying T270 as severely affected, and T250 as tolerant to the stresses applied. Investigation of transcriptome changes caused by combined stress in roots and leaves of these two genotypes yielded a low number of differentially expressed genes (DEGs) in T250 compared to T270, suggesting that T250 tailors changes in gene expression to efficiently respond to combined stress. By contrast, the susceptible tomato activated approximately one thousand and two thousand genes in leaves and roots respectively, indicating a more generalized stress response in this genotype. In particular, developmental and stress-related genes were differentially expressed, such as hormone responsive factors and transcription factors. Analysis of differential alternative splicing (DAS) events showed that combined stress greatly affects the splicing landscape in both genotypes, highlighting the important role of AS in stress response mechanisms. In particular, several stress and growth-related genes as well as transcription and splicing factors were differentially spliced in both tissues. Taken together, these results reveal important insights into the transcriptional and post-transcriptional mechanisms regulating tomato adaptation to growth under reduced water and nitrogen inputs.

2.
Plants (Basel) ; 10(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064272

ABSTRACT

Biostimulants have rapidly and widely been adopted as growth enhancers and stress protectants in agriculture, however, due to the complex nature of these products, their mechanism of action is not clearly understood. By using two algal based commercial biostimulants in combination with the Solanum lycopersicum cv. MicroTom model system, we assessed how the modulation of nitrogen metabolites and potassium levels could contribute to mediate physiological mechanisms that are known to occur in response to salt/and or osmotic stress. Here we provide evidence that the reshaping of amino acid metabolism can work as a functional effector, coordinating ion homeostasis, osmotic adjustment and scavenging of reactive oxygen species under increased osmotic stress in MicroTom plant cells. The Superfifty biostimulant is responsible for a minor amino acid rich-phenotype and could represent an interesting instrument to untangle nitrogen metabolism dynamics in response to salinity and/or osmotic stress.

3.
Front Plant Sci ; 10: 1507, 2019.
Article in English | MEDLINE | ID: mdl-31867024

ABSTRACT

Omeprazole is a selective proton pump inhibitor in humans that inhibits the H+/K+-ATPase of gastric parietal cells. Omeprazole has been recently shown to act as a plant growth regulator and enhancer of salt stress tolerance. Here, we report that omeprazole treatment in hydroponically grown maize improves nitrogen uptake and assimilation. The presence of micromolar concentrations of omeprazole in the nutrient solution alleviates the chlorosis and growth inhibition induced by low nitrogen availability. Nitrate uptake and assimilation is enhanced in omeprazole treated plants through changes in nitrate reductase activity, primary metabolism, and gene expression. Omeprazole enhances nitrate assimilation through an interaction with nitrate reductase, altering its activation state and affinity for nitrate as a substrate. Omeprazole and its targets represent a novel method for enhancing nitrogen use efficiency in plants.

4.
BMC Plant Biol ; 18(1): 205, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30236058

ABSTRACT

BACKGROUND: The emerging roles of rhizobacteria in improving plant nutrition and stress protection have great potential for sustainable use in saline soils. We evaluated the function of the salt-tolerant strain Azotobacter chroococcum 76A as stress protectant in an important horticultural crop, tomato. Specifically we hypothesized that treatment of tomato plants with A. chroococcum 76A could improve plant performance under salinity stress and sub-optimal nutrient regimen. RESULTS: Inoculation of Micro Tom tomato plants with A. chroococcum 76A increased numerous growth parameters and also conferred protective effects under both moderate (50 mM NaCl) and severe (100 mM NaCl) salt stresses. These benefits were mostly observed under reduced nutrient regimen and were less appreciable in optimal nitrogen conditions. Therefore, the efficiency of A. chroococcum 76A was found to be dependent on the nutrient status of the rhizosphere. The expression profiles of LEA genes indicated that A. chroococcum 76A treated plants were more responsive to stress stimuli when compared to untreated controls. However, transcript levels of key nitrogen assimilation genes revealed that the optimal nitrogen regimen, in combination with the strain A. chroococcum 76A, may have saturated plant's ability to assimilate nitrogen. CONCLUSIONS: Roots inoculation with A. chroococcum 76A tomato promoted tomato plant growth, stress tolerance and nutrient assimilation efficiency under moderate and severe salinity. Inoculation with beneficial bacteria such as A. chroococcum 76A may be an ideal solution for low-input systems, where environmental constraints and limited chemical fertilization may affect the potential yield.


Subject(s)
Adaptation, Physiological/physiology , Azotobacter/physiology , Nitrogen/metabolism , Plant Roots/microbiology , Solanum lycopersicum/physiology , Azotobacter/growth & development , Gene Expression Regulation, Plant , Solanum lycopersicum/microbiology , Plant Leaves/physiology , Rhizosphere , Salt Tolerance , Symbiosis
5.
Plant Mol Biol ; 83(4-5): 405-15, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23925404

ABSTRACT

The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a screen of second site suppressors of the salt overly sensitive3-1 (sos3-1) mutant, we isolated the anthocyanin-impaired-response-1 (air1) mutant. air1 is unable to accumulate anthocyanins under salt stress, a key phenotype of sos3-1 under high NaCl levels (120 mM). The air1 mutant showed a defect in anthocyanin production in response to salt stress but not to other stresses such as high light, low phosphorous, high temperature or drought stress. This specificity indicated that air1 mutation did not affect anthocyanin biosynthesis but rather its regulation in response to salt stress. Analysis of this mutant revealed a T-DNA insertion at the first exon of an Arabidopsis thaliana gene encoding for a basic region-leucine zipper transcription factor. air1 mutants displayed higher survival rates compared to wild-type in oxidative stress conditions, and presented an altered expression of anthocyanin biosynthetic genes such as F3H, F3'H and LDOX in salt stress conditions. The results presented here indicate that AIR1 is involved in the regulation of various steps of the flavonoid and anthocyanin accumulation pathways and is itself regulated by the salt-stress response signalling machinery. The discovery and characterization of AIR1 opens avenues to dissect the connections between abiotic stress and accumulation of antioxidants in the form of flavonoids and anthocyanins.


Subject(s)
Anthocyanins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression Regulation, Plant , Anthocyanins/analysis , Arabidopsis/drug effects , Arabidopsis/physiology , Arabidopsis/radiation effects , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Flavonoids/metabolism , Light , Mutagenesis, Insertional , Phenotype , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/radiation effects , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/physiology , Plant Shoots/radiation effects , Real-Time Polymerase Chain Reaction , Sodium Chloride/pharmacology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...