Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 88(1): e0174321, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34705550

ABSTRACT

Standard methods for calculating microbial growth rates (µ) through the use of proxies, such as in situ fluorescence, cell cycle, or cell counts, are critical for determining the magnitude of the role bacteria play in marine carbon (C) and nitrogen (N) cycles. Taxon-specific growth rates in mixed assemblages would be useful for attributing biogeochemical processes to individual species and understanding niche differentiation among related clades, such as found in Synechococcus and Prochlorococcus. We tested three novel DNA sequencing-based methods (iRep, bPTR, and GRiD) for evaluating the growth of light-synchronized Synechococcus cultures under different light intensities and temperatures. In vivo fluorescence and cell cycle analysis were used to obtain standard estimates of growth rate for comparison with those of the sequence-based methods (SBM). None of the SBM values were correlated with growth rates calculated by standard techniques despite the fact that all three SBM were correlated with the percentage of cells in S phase (DNA replication) over the diel cycle. Inaccuracy in determining the time of maximum DNA replication is unlikely to account entirely for the absence of a relationship between SBM and growth rate, but the fact that most microbes in the surface ocean exhibit some degree of diel cyclicity is a caution for application of these methods. SBM correlate with DNA replication but cannot be interpreted quantitatively in terms of growth rate. IMPORTANCE Small but abundant, cyanobacterial strains such as the photosynthetic Synechococcus spp. are important because they contribute significantly to primary productivity in the ocean. These bacteria generate oxygen and provide biologically available carbon, which is essential for organisms at higher trophic levels. The small size and diversity of natural microbial assemblages mean that taxon-specific activities (e.g., growth rate) are difficult to obtain in the field. It has been suggested that sequence-based methods (SBM) may be able to solve this problem. We find, however, that SBM can detect DNA replication and are correlated with phases of the cell cycle but cannot be interpreted in terms of absolute growth rate for Synechococcus cultures growing under a day-night cycle, like that experienced in the ocean.


Subject(s)
Prochlorococcus , Synechococcus , Genomics , Prochlorococcus/genetics , Seawater , Sequence Analysis, DNA , Synechococcus/genetics
2.
Environ Microbiol ; 15(5): 1514-31, 2013 May.
Article in English | MEDLINE | ID: mdl-22985062

ABSTRACT

The coccolithophore Emiliania huxleyi plays a pivotal role in the marine carbon cycle. However, we have only limited understanding of how its life cycle and bacterial interactions affect the production and composition of dissolved extracellular organic carbon and its transfer to the particulate pool. We traced the fate of photosynthetically fixed carbon during phosphate-limited stationary growth of non-axenic, calcifying E. huxleyi batch cultures, and more specifically the transfer of this carbon to bacteria and to dissolved high molecular weight neutral aldoses (HMW NAld) and extracellular particulate carbon. We then compared the dynamics of dissolved carbohydrates and transparent exopolymer particles (TEP) between cultures of non-axenic and axenic diploid E. huxleyi. In addition, we present the first data on extracellular organic carbon in (non-axenic) haploid E. huxleyi cultures. Bacteria enhanced the accumulation of dissolved polysaccharides and altered the composition of dissolved HMW NAld, while they also stimulated the formation of TEP containing high densities of charged polysaccharides in diploid E. huxleyi cultures. In haploid E. huxleyi cultures we found a more pronounced accumulation of dissolved carbohydrates, which had a different NAld composition than the diploid cultures. TEP formation was significantly lower than in the diploid cultures, despite the presence of bacteria. In diploid E. huxleyi cultures, we measured a high level of extracellular release of organic carbon (34-76%), retrieved mainly in the particulate pool instead of the dissolved pool. Enhanced formation of sticky TEP due to bacteria-alga interactions, in concert with the production of coccoliths, suggests that especially diploid E. huxleyi blooms increase the efficiency of export production in the ocean during dissolved phosphate-limited conditions.


Subject(s)
Bacteria/metabolism , Carbohydrate Metabolism , Haptophyta/metabolism , Polymers/metabolism , Seawater/microbiology , Bacteria/growth & development , Carbohydrates/chemistry , Carbon/metabolism , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Haptophyta/cytology , Haptophyta/growth & development , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...