Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Poult Sci ; 103(4): 103578, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417327

ABSTRACT

Necrotic enteritis is a devastating disease to poultry caused by the bacterium Clostridium perfringens. As a novel approach to combating poultry necrotic enteritis, we identified and characterized several hundred single domain antibody fragments (or nanobodies) capable of binding either the NetB toxin or the collagen-binding adhesin (CnaA) of C. perfringens. Many of the nanobodies could neutralize the in vitro functions of NetB or CnaA with inhibitory concentrations in the nanomolar range. The nanobodies were also screened for proteolytic stability in an extract derived from gastrointestinal tract fluids of chickens. A collection of 6 nanobodies (4 targeting NetB and 2 targeting CnaA) with high neutralizing activity and high gastrointestinal tract extract stability were expressed and secreted by Pichia pastoris or Bacillus subtilis. Chickens were given a feed with 1 of the 2 nanobody-containing groups: 1) nanobody-containing P. pastoris supernatants that were semi-purified, lyophilized, and enterically coated, or 2) B. subtilis spores from strains containing the nanobody genes. Compared to untreated chickens (23.75% mortality), mortality of chickens receiving feed modified with the P. pastoris and B. subtilis products decreased to 11.25 and 7.5%, respectively. These results offer a new opportunity to improve the control of poultry necrotic enteritis by incorporating highly specific nanobodies or bacteria expressing these nanobodies directly into chicken feed.


Subject(s)
Clostridium Infections , Enteritis , Poultry Diseases , Single-Domain Antibodies , Animals , Clostridium perfringens/genetics , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Poultry , Incidence , Enteritis/prevention & control , Enteritis/veterinary , Chickens , Poultry Diseases/prevention & control , Poultry Diseases/microbiology
2.
bioRxiv ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38260485

ABSTRACT

As the primary Ca 2+ release channel in skeletal muscle sarcoplasmic reticulum (SR), mutations in the type 1 ryanodine receptor (RyR1) or its binding partners underlie a constellation of muscle disorders, including malignant hyperthermia (MH). In patients with MH mutations, exposure to triggering drugs such as the halogenated volatile anesthetics biases RyR1 to an open state, resulting in uncontrolled Ca 2+ release, sarcomere tension and heat production. Restoration of Ca 2+ into the SR also consumes ATP, generating a further untenable metabolic load. When anesthetizing patients with known MH mutations, the non-triggering intravenous general anesthetic propofol is commonly substituted for triggering anesthetics. Evidence of direct binding of anesthetic agents to RyR1 or its binding partners is scant, and the atomic-level interactions of propofol with RyR1 are entirely unknown. Here, we show that propofol decreases RyR1 opening in heavy SR vesicles and planar lipid bilayers, and that it inhibits activator-induced Ca 2+ release from SR in human skeletal muscle. In addition to confirming direct binding, photoaffinity labeling using m- azipropofol (AziP m ) revealed several putative propofol binding sites on RyR1. Prediction of binding affinity by molecular dynamics simulation suggests that propofol binds at least one of these sites at clinical concentrations. These findings invite the hypothesis that in addition to propofol not triggering MH, it may also be protective against MH by inhibiting induced Ca 2+ flux through RyR1.

3.
ACS Chem Biol ; 18(10): 2290-2299, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37769131

ABSTRACT

Hyperactivity of cardiac sarcoplasmic reticulum (SR) ryanodine receptor (RyR2) Ca2+-release channels contributes to heart failure and arrhythmias. Reducing the RyR2 activity, particularly during cardiac relaxation (diastole), is a desirable therapeutic goal. We previously reported that the unnatural enantiomer (ent) of an insect-RyR activator, verticilide, inhibits porcine and mouse RyR2 at diastolic (nanomolar) Ca2+ and has in vivo efficacy against atrial and ventricular arrhythmia. To determine the ent-verticilide structural mode of action on RyR2 and guide its further development via medicinal chemistry structure-activity relationship studies, here, we used fluorescence lifetime (FLT)-measurements of Förster resonance energy transfer (FRET) in HEK293 cells expressing human RyR2. For these studies, we used an RyR-specific FRET molecular-toolkit and computational methods for trilateration (i.e., using distances to locate a point of interest). Multiexponential analysis of FLT-FRET measurements between four donor-labeled FKBP12.6 variants and acceptor-labeled ent-verticilide yielded distance relationships placing the acceptor probe at two candidate loci within the RyR2 cryo-EM map. One locus is within the Ry12 domain (at the corner periphery of the RyR2 tetrameric complex). The other locus is sandwiched at the interface between helical domain 1 and the SPRY3 domain. These findings document RyR2-target engagement by ent-verticilide, reveal new insight into the mechanism of action of this new class of RyR2-targeting drug candidate, and can serve as input in future computational determinations of the ent-verticilide binding site on RyR2 that will inform structure-activity studies for lead optimization.


Subject(s)
Depsipeptides , Ryanodine Receptor Calcium Release Channel , Mice , Swine , Humans , Animals , Ryanodine/chemistry , Ryanodine/metabolism , Ryanodine/therapeutic use , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Fluorescence Resonance Energy Transfer/methods , HEK293 Cells , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Depsipeptides/metabolism , Calcium/metabolism , Myocytes, Cardiac/metabolism
4.
Sci Adv ; 9(21): eadf4936, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37224245

ABSTRACT

Calcins are peptides from scorpion venom with the unique ability to cross cell membranes, gaining access to intracellular targets. Ryanodine Receptors (RyR) are intracellular ion channels that control release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. Calcins target RyRs and induce long-lived subconductance states, whereby single-channel currents are decreased. We used cryo-electron microscopy to reveal the binding and structural effects of imperacalcin, showing that it opens the channel pore and causes large asymmetry throughout the cytosolic assembly of the tetrameric RyR. This also creates multiple extended ion conduction pathways beyond the transmembrane region, resulting in subconductance. Phosphorylation of imperacalcin by protein kinase A prevents its binding to RyR through direct steric hindrance, showing how posttranslational modifications made by the host organism can determine the fate of a natural toxin. The structure provides a direct template for developing calcin analogs that result in full channel block, with potential to treat RyR-related disorders.


Subject(s)
Ryanodine Receptor Calcium Release Channel , Scorpion Venoms , Phosphorylation , Cryoelectron Microscopy , Cyclic AMP-Dependent Protein Kinases , Scorpion Venoms/pharmacology
5.
Structure ; 31(7): 790-800.e4, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37192614

ABSTRACT

The coordinated release of Ca2+ from the sarcoplasmic reticulum (SR) is critical for excitation-contraction coupling. This release is facilitated by ryanodine receptors (RyRs) that are embedded in the SR membrane. In skeletal muscle, activity of RyR1 is regulated by metabolites such as ATP, which upon binding increase channel open probability (Po). To obtain structural insights into the mechanism of RyR1 priming by ATP, we determined several cryo-EM structures of RyR1 bound individually to ATP-γ-S, ADP, AMP, adenosine, adenine, and cAMP. We demonstrate that adenine and adenosine bind RyR1, but AMP is the smallest ATP derivative capable of inducing long-range (>170 Å) structural rearrangements associated with channel activation, establishing a structural basis for key binding site interactions that are the threshold for triggering quaternary structural changes. Our finding that cAMP also induces these structural changes and results in increased channel opening suggests its potential role as an endogenous modulator of RyR1 conductance.


Subject(s)
Nucleotides , Ryanodine Receptor Calcium Release Channel , Adenine/metabolism , Adenosine/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Calcium/metabolism , Muscle, Skeletal/metabolism , Nucleotides/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry , Humans , Animals , Rabbits
6.
Elife ; 122023 03 30.
Article in English | MEDLINE | ID: mdl-36995326

ABSTRACT

Transcription by RNA Polymerase II (Pol II) is initiated by the hierarchical assembly of the pre-initiation complex onto promoter DNA. Decades of research have shown that the TATA-box binding protein (TBP) is essential for Pol II loading and initiation. Here, we report instead that acute depletion of TBP in mouse embryonic stem cells has no global effect on ongoing Pol II transcription. In contrast, acute TBP depletion severely impairs RNA Polymerase III initiation. Furthermore, Pol II transcriptional induction occurs normally upon TBP depletion. This TBP-independent transcription mechanism is not due to a functional redundancy with the TBP paralog TRF2, though TRF2 also binds to promoters of transcribed genes. Rather, we show that the TFIID complex can form and, despite having reduced TAF4 and TFIIA binding when TBP is depleted, the Pol II machinery is sufficiently robust in sustaining TBP-independent transcription.


Subject(s)
RNA Polymerase II , Transcription Factors , Animals , Mice , Transcription Factors/metabolism , RNA Polymerase II/metabolism , DNA-Binding Proteins/metabolism , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism , TATA Box/genetics , Embryonic Stem Cells/metabolism , Transcription, Genetic , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism , RNA Polymerase III/genetics
8.
Cell Calcium ; 108: 102671, 2022 12.
Article in English | MEDLINE | ID: mdl-36370621

ABSTRACT

Inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ryanodine Receptors (RyRs) dictate the release of Ca2+ from the Endoplasmic (ER) and Sarcoplasmic Reticulum (SR). Arige et al [1] investigated the functional importance of specific Ca2+-coordinating residues, unambiguously confirming the activating Ca2+ binding site in the IP3R.


Subject(s)
Inositol , Ryanodine Receptor Calcium Release Channel , Ryanodine Receptor Calcium Release Channel/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol/metabolism , Sarcoplasmic Reticulum/metabolism , Binding Sites , Calcium/metabolism , Calcium Signaling , Inositol 1,4,5-Trisphosphate/metabolism
9.
PLoS Genet ; 18(9): e1010417, 2022 09.
Article in English | MEDLINE | ID: mdl-36174062

ABSTRACT

Gametogenesis requires coordinated signaling between germ cells and somatic cells. We previously showed that Gap junction (GJ)-mediated soma-germline communication is essential for fly spermatogenesis. Specifically, the GJ protein Innexin4/Zero population growth (Zpg) is necessary for somatic and germline stem cell maintenance and differentiation. It remains unknown how GJ-mediated signals regulate spermatogenesis or whether the function of these signals is restricted to the earliest stages of spermatogenesis. Here we carried out comprehensive structure/function analysis of Zpg using insights obtained from the protein structure of innexins to design mutations aimed at selectively perturbing different regulatory regions as well as the channel pore of Zpg. We identify the roles of various regulatory sites in Zpg in the assembly and maintenance of GJs at the plasma membrane. Moreover, mutations designed to selectively disrupt, based on size and charge, the passage of cargos through the Zpg channel pore, blocked different stages of spermatogenesis. Mutations were identified that progressed through early germline and soma development, but exhibited defects in entry to meiosis or sperm individualisation, resulting in reduced fertility or sterility. Our work shows that specific signals that pass through GJs regulate the transition between different stages of gametogenesis.


Subject(s)
Gap Junctions , Semen , Male , Animals , Semen/metabolism , Gap Junctions/physiology , Connexins/genetics , Connexins/metabolism , Spermatogenesis/genetics , Germ Cells/metabolism
10.
Structure ; 30(7): 919-921, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35803239

ABSTRACT

In this issue of Structure, Melville and colleagues used cryo-EM to study the binding of ryanodine receptors to Rycals, compounds with the potential to treat skeletal and cardiac muscle disorders. Unexpectedly, they found that Rycal packs against an ATP in a peripheral pocket, which stabilizes the closed channel state.


Subject(s)
Calcium , Ryanodine Receptor Calcium Release Channel , Adenosine Triphosphate/metabolism , Calcium/metabolism , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry
11.
FEBS J ; 289(23): 7446-7465, 2022 12.
Article in English | MEDLINE | ID: mdl-35838319

ABSTRACT

Cardiac troponin C (cTnC) is the critical Ca2+ -sensing component of the troponin complex. Binding of Ca2+ to cTnC triggers a cascade of conformational changes within the myofilament that culminate in force production. Hypertrophic cardiomyopathy (HCM)-associated TNNC1 variants generally induce a greater degree and duration of Ca2+ binding, which may underly the hypertrophic phenotype. Regulation of contraction has long been thought to occur exclusively through Ca2+ binding to site II of cTnC. However, work by several groups including ours suggest that Mg2+ , which is several orders of magnitude more abundant in the cell than Ca2+ , may compete for binding to the same cTnC regulatory site. We previously used isothermal titration calorimetry (ITC) to demonstrate that physiological concentrations of Mg2+ may decrease site II Ca2+ -binding in both N-terminal and full-length cTnC. Here, we explore the binding of Ca2+ and Mg2+ to cTnC harbouring a series of TNNC1 variants thought to be causal in HCM. ITC and thermodynamic integration (TI) simulations show that A8V, L29Q and A31S elevate the affinity for both Ca2+ and Mg2+ . Further, L48Q, Q50R and C84Y that are adjacent to the EF hand binding motif of site II have a more significant effect on affinity and the thermodynamics of the binding interaction. To the best of our knowledge, this work is the first to explore the role of Mg2+ in modifying the Ca2+ affinity of cTnC mutations linked to HCM. Our results indicate a physiologically significant role for cellular Mg2+ both at baseline and when elevated on modifying the Ca2+ binding properties of cTnC and the subsequent conformational changes which precede cardiac contraction.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Hypertrophic/genetics
12.
Nat Commun ; 13(1): 3760, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768468

ABSTRACT

The KCNQ1 ion channel plays critical physiological roles in electrical excitability and K+ recycling in organs including the heart, brain, and gut. Loss of function is relatively common and can cause sudden arrhythmic death, sudden infant death, epilepsy and deafness. Here, we report cryogenic electron microscopic (cryo-EM) structures of Xenopus KCNQ1 bound to Ca2+/Calmodulin, with and without the KCNQ1 channel activator, ML277. A single binding site for ML277 was identified, localized to a pocket lined by the S4-S5 linker, S5 and S6 helices of two separate subunits. Several pocket residues are not conserved in other KCNQ isoforms, explaining specificity. MD simulations and point mutations support this binding location for ML277 in open and closed channels and reveal that prevention of inactivation is an important component of the activator effect. Our work provides direction for therapeutic intervention targeting KCNQ1 loss of function pathologies including long QT interval syndrome and seizures.


Subject(s)
KCNQ1 Potassium Channel , Long QT Syndrome , Piperidines , Thiazoles , Tosyl Compounds , Animals , KCNQ1 Potassium Channel/metabolism , Long QT Syndrome/drug therapy , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Mutation , Piperidines/pharmacology , Thiazoles/pharmacology , Tosyl Compounds/pharmacology , Xenopus
13.
Proc Natl Acad Sci U S A ; 119(10): e2120416119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238659

ABSTRACT

SignificanceIon channels have evolved the ability to communicate with one another, either through protein-protein interactions, or indirectly via intermediate diffusible messenger molecules. In special cases, the channels are part of different membranes. In muscle tissue, the T-tubule membrane is in proximity to the sarcoplasmic reticulum, allowing communication between L-type calcium channels and ryanodine receptors. This process is critical for excitation-contraction coupling and requires auxiliary proteins like junctophilin (JPH). JPHs are targets for disease-associated mutations, most notably hypertrophic cardiomyopathy mutations in the JPH2 isoform. Here we provide high-resolution snapshots of JPH, both alone and in complex with a calcium channel peptide, and show how this interaction is targeted by cardiomyopathy mutations.


Subject(s)
Calcium Channels, L-Type/metabolism , Cardiomyopathy, Hypertrophic/genetics , Ion Channel Gating , Mutation , Protein Isoforms/metabolism , Calcium Channels, L-Type/chemistry , Crystallography, X-Ray , Humans , Protein Conformation , Protein Isoforms/chemistry
14.
Elife ; 112022 03 17.
Article in English | MEDLINE | ID: mdl-35297759

ABSTRACT

Several mutations identified in phospholamban (PLN) have been linked to familial dilated cardiomyopathy (DCM) and heart failure, yet the underlying molecular mechanism remains controversial. PLN interacts with sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and regulates calcium uptake, which is modulated by the protein kinase A (PKA)-dependent phosphorylation of PLN during the fight-or-flight response. Here, we present the crystal structures of the catalytic domain of mouse PKA in complex with wild-type and DCM-mutant PLNs. Our structures, combined with the results from other biophysical and biochemical assays, reveal a common disease mechanism: the mutations in PLN reduce its phosphorylation level by changing its conformation and weakening its interactions with PKA. In addition, we demonstrate that another more ubiquitous SERCA-regulatory peptide, called another-regulin (ALN), shares a similar mechanism mediated by PKA in regulating SERCA activity.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Animals , Calcium-Binding Proteins , Cardiomyopathy, Dilated , Cyclic AMP-Dependent Protein Kinases/metabolism , Mice , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
15.
Biophys J ; 121(7): 1166-1183, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35219649

ABSTRACT

A growing number of nonsynonymous mutations in the human HCN4 channel gene, the major component of the funny channel of the sinoatrial node, are associated with disease but how they impact channel structure and function, and, thus, how they result in disease, is not clear for any of them. Here, we study the S672R mutation, in the cyclic nucleotide-binding domain of the channel, which has been associated with an inherited bradycardia in an Italian family. This may be the best studied of all known mutations, yet the underlying molecular and atomistic mechanisms remain unclear and controversial. We combine measurements of binding by isothermal titration calorimetry to a naturally occurring tetramer of the HCN4 C-terminal region with a mathematical model to show that weaker binding of cAMP to the mutant channel contributes to a lower level of facilitation of channel opening at submicromolar ligand concentrations but that, in general, facilitation occurs over a range that is similar between the mutant and wild-type because of enhanced opening of the mutant channel when liganded. We also show that the binding affinity for cGMP, which produces the same maximum facilitation of HCN4 opening as cAMP, is weaker in the mutant HCN4 channel but that, for both wild-type and mutant, high-affinity binding of cGMP occurs in a range of concentrations below 1 µM. Thus, binding of cGMP to the HCN4 channel may be relevant normally in vivo and reduced binding of cGMP, as well as cAMP, to the mutant channel may contribute to the reduced resting heart rate observed in the affected family.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Sinoatrial Node , Binding Sites/physiology , Bradycardia/genetics , Cyclic GMP/metabolism , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Muscle Proteins/chemistry , Nucleotides, Cyclic/chemistry , Potassium Channels/metabolism
16.
Appl Environ Microbiol ; 88(1): e0156621, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34731054

ABSTRACT

Xyloglucan (XyG) is a ubiquitous plant cell wall hemicellulose that is targeted by a range of syntenic, microheterogeneous xyloglucan utilization loci (XyGUL) in Bacteroidetes species of the human gut microbiota (HGM), including Bacteroides ovatus and B. uniformis. Comprehensive biochemical and biophysical analyses have identified key differences in the protein complements of each locus that confer differential access to structurally diverse XyG side chain variants. A second, nonsyntenic XyGUL was previously identified in B. uniformis, although its function in XyG utilization compared to its syntenic counterpart was unclear. Here, complementary enzymatic product profiles and bacterial growth curves showcase the notable preference of BuXyGUL2 surface glycan-binding proteins (SGBPs) to bind full-length XyG, as well as a range of oligosaccharides produced by the glycoside hydrolase family 5 (GH5_4) endo-xyloglucanase from this locus. We use isothermal titration calorimetry (ITC) to characterize this binding capacity and pinpoint the specific contributions of each protein to nutrient capture. The high-resolution structure of BuXyGUL2 SGBP-B reveals remarkable putative binding site conservation with the canonical XyG-binding BoXyGUL SGBP-B, supporting similar roles for these proteins in glycan capture. Together, these data underpin the central role of complementary XyGUL function in B. uniformis and broaden our systems-based and mechanistic understanding of XyG utilization in the HGM. IMPORTANCE The omnipresence of xyloglucans in the human diet has led to the evolution of heterogeneous gene clusters in several Bacteroidetes species in the HGM, each specially tuned to respond to the structural variations of these complex plant cell wall polysaccharides. Our research illuminates the complementary roles of syntenic and nonsyntenic XyGUL in B. uniformis in conferring growth on a variety of XyG-derived substrates, providing evidence of glycan-binding protein microadaptation within a single species. These data serve as a comprehensive overview of the binding capacities of the SGBPs from a nonsyntenic B. uniformis XyGUL and will inform future studies on the roles of complementary loci in glycan targeting by key HGM species.


Subject(s)
Gastrointestinal Tract , Xylans , Bacteroides , Glucans , Humans , Hydrolysis
17.
J Exp Bot ; 73(3): 680-695, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34505622

ABSTRACT

In land plants and algae, cellulose is important for strengthening cell walls and preventing breakage due to physical forces. Though our understanding of cellulose production by cellulose synthases (CESAs) has seen significant advances for several land plant and bacterial species, functional characterization of this fundamental protein is absent in red algae. Here we identify CESA gene candidates in the calcifying red alga Calliarthron tuberculosum using sequence similarity-based approaches, and elucidate their phylogenetic relationship with other CESAs from diverse taxa. One gene candidate, CtCESA1, was closely related to other putative red algal CESA genes. To test if CtCESA1 encoded a true cellulose synthase, CtCESA1 protein was expressed and purified from insect and yeast expression systems. CtCESA1 showed glucan synthase activity in glucose tracer assays. CtCESA1 activity was relatively low when compared with plant and bacterial CESA activity. In an in vitro assay, a predicted N-terminal starch-binding domain from CtCESA1 bound red algal floridean starch extracts, representing a unique domain in red algal CESAs not present in CESAs from other lineages. When the CtCESA1 gene was introduced into Arabidopsis thaliana cesa mutants, the red algal CtCESA1 partially rescued the growth defects of the primary cell wall cesa6 mutant, but not cesa3 or secondary cell wall cesa7 mutants. A fluorescently tagged CtCESA1 localized to the plasma membrane in the Arabidopsis cesa6 mutant background. This study presents functional evidence validating the sequence annotation of red algal CESAs. The relatively low activity of CtCESA1, partial complementation in Arabidopsis, and presence of unique protein domains suggest that there are probably functional differences between the algal and land plant CESAs.


Subject(s)
Glucosyltransferases , Rhodophyta , Cell Wall/metabolism , Glucosyltransferases/metabolism , Phylogeny , Rhodophyta/enzymology , Rhodophyta/genetics
18.
Physiol Rev ; 102(1): 209-268, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34280054

ABSTRACT

Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs and depolarization of the plasma membrane for a particular RyR subtype expressed in skeletal muscle. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3 Å. The available structures have provided many new mechanistic insights into the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of posttranslational modifications, additional binding partners, and the higher order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Cell Membrane/metabolism , Humans , Muscle, Skeletal/metabolism
19.
J Cell Sci ; 135(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-34913055

ABSTRACT

Junctin is a transmembrane protein of striated muscles, located at the junctional sarcoplasmic reticulum (SR). It is characterized by a luminal C-terminal tail, through which it functionally interacts with calsequestrin and the ryanodine receptor (RyR). Interaction with calsequestrin was ascribed to the presence of stretches of charged amino acids (aa). However, the regions able to bind calsequestrin have not been defined in detail. We report here that, in non-muscle cells, junctin and calsequestrin assemble in long linear regions within the endoplasmic reticulum, mirroring the formation of calsequestrin polymers. In differentiating myotubes, the two proteins colocalize at triads, where they assemble with other proteins of the junctional SR. By performing GST pull-down assays with distinct regions of the junctin tail, we identified two KEKE motifs that can bind calsequestrin. In addition, stretches of charged aa downstream these motifs were found to also bind calsequestrin and the RyR. Deletion of even one of these regions impaired the ability of junctin to localize at the junctional SR, suggesting that interaction with other proteins at this site represents a key element in junctin targeting.


Subject(s)
Calcium-Binding Proteins , Calsequestrin , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calsequestrin/genetics , Mixed Function Oxygenases/metabolism , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/metabolism
20.
J Biol Chem ; 298(1): 101412, 2022 01.
Article in English | MEDLINE | ID: mdl-34793835

ABSTRACT

The N-terminal region (NTR) of ryanodine receptor (RyR) channels is critical for the regulation of Ca2+ release during excitation-contraction (EC) coupling in muscle. The NTR hosts numerous mutations linked to skeletal (RyR1) and cardiac (RyR2) myopathies, highlighting its potential as a therapeutic target. Here, we constructed two biosensors by labeling the mouse RyR2 NTR at domains A, B, and C with FRET pairs. Using fluorescence lifetime (FLT) detection of intramolecular FRET signal, we developed high-throughput screening (HTS) assays with these biosensors to identify small-molecule RyR modulators. We then screened a small validation library and identified several hits. Hits with saturable FRET dose-response profiles and previously unreported effects on RyR were further tested using [3H]ryanodine binding to isolated sarcoplasmic reticulum vesicles to determine effects on intact RyR opening in its natural membrane. We identified three novel inhibitors of both RyR1 and RyR2 and two RyR1-selective inhibitors effective at nanomolar Ca2+. Two of these hits activated RyR1 only at micromolar Ca2+, highlighting them as potential enhancers of excitation-contraction coupling. To determine whether such hits can inhibit RyR leak in muscle, we further focused on one, an FDA-approved natural antibiotic, fusidic acid (FA). In skinned skeletal myofibers and permeabilized cardiomyocytes, FA inhibited RyR leak with no detrimental effect on skeletal myofiber excitation-contraction coupling. However, in intact cardiomyocytes, FA induced arrhythmogenic Ca2+ transients, a cautionary observation for a compound with an otherwise solid safety record. These results indicate that HTS campaigns using the NTR biosensor can identify compounds with therapeutic potential.


Subject(s)
Biosensing Techniques , Ryanodine Receptor Calcium Release Channel , Animals , Calcium/metabolism , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Mice , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/analysis , Ryanodine Receptor Calcium Release Channel/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...