Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
SAGE Open Med ; 12: 20503121241260006, 2024.
Article in English | MEDLINE | ID: mdl-38867718

ABSTRACT

Purpose: Glial fibrillary acidic protein serves as a biomarker indicative of astroglial injury, particularly following instances of severe traumatic brain injury. This study aims to evaluate variations in serum glial fibrillary acidic protein levels within the first 3 days and their correlation with outcomes in patients with severe traumatic brain injury. Subjects and methods: Thirty-nine patients with severe traumatic brain injury were enrolled in the study. Their blood samples were collected at six distinct time points: T0 (upon admission), T1, T2, T3, T4, and T5 (6-, 12-, 24-, 48-, and 72-h post-admission, respectively). The blood samples were run for the quantification of serum glial fibrillary acidic protein levels and other biochemical tests. All patients were closely watched and the outcomes at discharge were evaluated. Results: Glial fibrillary acidic protein levels tend to increase gradually from the time of admission to 48 h post-admission and then decrease at 72 h post-admission. Glial fibrillary acidic protein T2 is correlated with Acute Physiology and Chronic Health Evaluation II score, lactate, Simplified Acute Physiology Score II score and outcome. Glial fibrillary acidic protein max correlated with lactate, Acute Physiology and Chronic Health Evaluation II score, Simplified Acute Physiology Score II score, and outcome. Glasgow Coma Score at admission and glial fibrillary acidic protein T2 (OR = 1.034; p = 0.025), T3 (OR = 1.029; p = 0.046), T4 (OR = 1.006; p = 0.032), T5 (OR = 1.012; p = 0.048) and glial fibrillary acidic protein max (OR = 1.005; p = 0.010) were independent factors that have significant prognostic value in mortality in patients with severe traumatic brain injury. The predictive model in predicting mortality had the highest area under the curve based on glial fibrillary acidic protein T2 and Glasgow Coma Score T0 with an area under the curve of 0.904 and p < 0.001. In the multivariable regression model, glial fibrillary acidic protein max was associated with Glasgow score (p < 0.001; VIF = 1.585), lactate T0 (p = 0.024; VIF = 1.163), Acute Physiology and Chronic Health Evaluation II score (p = 0.037; VIF = 1.360), and Rotterdam score (p = 0.044; VIF = 1.713). Conclusion: Glial fibrillary acidic protein levels tend to increase gradually from the time of admission to 48 h post-admission then decreases at 72 h post-admission. Glial fibrillary acidic protein T2, T3, T4, T5, and glial fibrillary acidic protein max were independent factors with significant prognostic mortality values in patients with severe traumatic brain injury.

2.
Int J Gen Med ; 16: 2531-2539, 2023.
Article in English | MEDLINE | ID: mdl-37346809

ABSTRACT

Background: Personal protective equipment (PPE), an essential shield to protect healthcare workers (HCWs) during the COVID-19 pandemic, has been reported to affect their heart rate variability (HRV). Objective: To investigate the changes of very short-term heart rate variability in HCWs after three hours of wearing PPE to treat COVID-19 patients at different working times and intensities, and related factors. Methods: Sixty-five healthy HCWs were enrolled at the Number 2 Infectious Field Hospital (formed by Military Hospital 103), Vietnam. Two-minute 12-lead electrocardiograms were recorded before wearing and after removing PPE. Results: After three hours of wearing PPE, the mean heart rate of HCWs increased (p = 0.048) meanwhile, the oxygen saturation decreased significantly (p = 0.035). Standard deviation of all normal to normal intervals (SDNN), mean intervals RR (mean NN), and root mean square successive difference (rMSSD) after wearing PPE was also reduced significantly. SDNN, Mean NN, and rMSSD decreased as the working intensity increased (as in mild, moderate, and severe patient departments). In univariate regression analysis, logSDNN, logmean NN and logrMSSD were positively correlated with SpO2 and QT interval (r = 0.14, r = 0.31, r = 0.25; r = 0.39, r = 0.77, r = 0.73, respectively) and were negatively correlated with ambient temperature inside PPE (r = -0.41, r = -0.405, r = -0.25, respectively) while logmean NN and log rMSSD were negatively correlated with diastolic blood pressure (r = -0.43, r = -0.39, respectively). In multivariable regression analysis, logSDNN and logmean NN were negatively correlated to ambient temperature inside PPE (r = -0.34, r = -0.18, respectively). Conclusion: Time-domain heart rate variability decreased after wearing PPE. Time-domain HRV parameters were related to ambient temperature inside PPE, diastolic blood pressure, QT interval, and SpO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...