Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38072884

ABSTRACT

The development of hydrogen energy sources based on electrochemical water splitting is of increasing interest due to its advantages in energy and environmental fields. In this study, Co3O4 was decorated on carbon cloth (CC) by a hydrothermal method and was used as an electrode for water splitting. The structural and morphological properties of the materials are assessed using a range of reliable techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with EDX mapping, and diffuse reflectance spectroscopy (DRS). Results indicate that the Co3O4/CC material was synthesized at 140 °C for 9 h and calcined at 350 °C achieving a superior overall water-splitting activity in the direction of hydrogen evolution reaction (HER) reaction than that of the oxygen evolution reaction (OER). In detail, HER characteristics with an overpotential at -0.234 V and a current density at 10 mA cm-2. In addition, the Co3O4/CC material also gives overpotential at 0.54 V for OER process. Furthermore, the electrochemical surface area of Co3O4/CC material is 7.6 times higher than CC electrode. Moreover, the CC fabric is destroyed when the annealing temperature is higher than 350 °C, leading to a significant decrease in the activity of Co3O4/CC. The as-prepared Co3O4 shows good adhesion and stability based on CC substrate without binder substance or further treatment of CC.

3.
Int J Gen Med ; 16: 2531-2539, 2023.
Article in English | MEDLINE | ID: mdl-37346809

ABSTRACT

Background: Personal protective equipment (PPE), an essential shield to protect healthcare workers (HCWs) during the COVID-19 pandemic, has been reported to affect their heart rate variability (HRV). Objective: To investigate the changes of very short-term heart rate variability in HCWs after three hours of wearing PPE to treat COVID-19 patients at different working times and intensities, and related factors. Methods: Sixty-five healthy HCWs were enrolled at the Number 2 Infectious Field Hospital (formed by Military Hospital 103), Vietnam. Two-minute 12-lead electrocardiograms were recorded before wearing and after removing PPE. Results: After three hours of wearing PPE, the mean heart rate of HCWs increased (p = 0.048) meanwhile, the oxygen saturation decreased significantly (p = 0.035). Standard deviation of all normal to normal intervals (SDNN), mean intervals RR (mean NN), and root mean square successive difference (rMSSD) after wearing PPE was also reduced significantly. SDNN, Mean NN, and rMSSD decreased as the working intensity increased (as in mild, moderate, and severe patient departments). In univariate regression analysis, logSDNN, logmean NN and logrMSSD were positively correlated with SpO2 and QT interval (r = 0.14, r = 0.31, r = 0.25; r = 0.39, r = 0.77, r = 0.73, respectively) and were negatively correlated with ambient temperature inside PPE (r = -0.41, r = -0.405, r = -0.25, respectively) while logmean NN and log rMSSD were negatively correlated with diastolic blood pressure (r = -0.43, r = -0.39, respectively). In multivariable regression analysis, logSDNN and logmean NN were negatively correlated to ambient temperature inside PPE (r = -0.34, r = -0.18, respectively). Conclusion: Time-domain heart rate variability decreased after wearing PPE. Time-domain HRV parameters were related to ambient temperature inside PPE, diastolic blood pressure, QT interval, and SpO2.

4.
Environ Sci Pollut Res Int ; 30(12): 33686-33694, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36481859

ABSTRACT

In this study, we used Fe2O3/diatomite material system toward ciprofloxacin (CIP) photo-Fenton removal in water under visible light (vis) excitation. The characterization of Fe2O3/diatomite catalysts was determined by X-ray diffraction patterns, Fourier-transform infrared analysis, inductively coupled plasma mass spectrometry, and scanning electron microscopy. The photo-Fenton catalytic activity of the Fe2O3/diatomite was appraised by the removal efficiency of the CIP throughout the effect of the H2O2 with various parameters such as initial pH, catalyst amount, and H2O2 amount. The results indicate that 0.2 gL-1 Fe2O3/diatomite catalysts achieved the highest performance at approximately 90.03% with a 50 µL H2O2 concentration. Furthermore, the Fe2O3/diatomite catalysts have high stability, with over 80% CIP removed after five cycles. This study is inspired to develop a potential material for photo-Fenton degradation of antibiotics in wastewater.


Subject(s)
Ciprofloxacin , Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Diatomaceous Earth , Catalysis
5.
Langmuir ; 38(13): 4138-4146, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35324210

ABSTRACT

Nitric oxide (NO) removal by photocatalytic oxidation over g-C3N4 has achieved more efficient results. However, there is a concern about the high NO-to-NO2 conversion yield of products, which is not suitable for the photocatalytic NO reaction. In this study, we modify g-C3N4 by WO3 nanoplates for the first time for photocatalytic NO oxidation over a WO3/g-C3N4 composite to enhance the green product selectivity under atmospheric conditions. The results indicate that the photocatalytic efficiency for NO removal by the WO3/g-C3N4 composite is drastically improved and achieves 52.5%, which is approximately 2.1 times higher than that of pure g-C3N4. Significantly, the green product (NO3-) selectivity of the WO3/g-C3N4 composite is 8.7 times higher than that of pure g-C3N4, and the selectivity remained high even after five cycles of photocatalytic tests. We also conclude that the enhanced green product selectivity of photocatalytic NO oxidation by the WO3/g-C3N4 composite is due to the separation and acceleration of the photogenerated charges of the WO3/g-C3N4 S-scheme heterojunction.

6.
Beilstein J Nanotechnol ; 13: 96-113, 2022.
Article in English | MEDLINE | ID: mdl-35116216

ABSTRACT

Semiconducting SnO2 photocatalyst nanomaterials are extensively used in energy and environmental research because of their outstanding physical and chemical properties. In recent years, nitrogen oxide (NO x ) pollutants have received particular attention from the scientific community. The photocatalytic NO x oxidation will be an important contribution to mitigate climate change in the future. Existing review papers mainly focus on applying SnO2 materials for photocatalytic oxidation of pollutants in the water, while studies on the decomposition of gas pollutants are still being developed. In addition, previous studies have shown that the photocatalytic activity regarding NO x decomposition of SnO2 and other materials depends on many factors, such as physical structure and band energies, surface and defect states, and morphology. Recent studies have been focused on the modification of properties of SnO2 to increase the photocatalytic efficiency of SnO2, including bandgap engineering, defect regulation, surface engineering, heterojunction construction, and using co-catalysts, which will be thoroughly highlighted in this review.

7.
Beilstein J Nanotechnol ; 13: 1541-1550, 2022.
Article in English | MEDLINE | ID: mdl-36605609

ABSTRACT

TiO2 nanotube arrays (TNAs) have been studied for photoelectrochemical (PEC) water splitting. However, there are two major barriers of TNAs, including a low photo-response and the fast charge carrier recombination in TNAs, leading to poor photocatalytic efficiency. Through a comparison of MoS2/TNAs and g-C3N4/TNAs, it was found that TNAs modified with MoS2 and g-C3N4 exhibited a current density of, respectively, 210.6 and 139.6 µA·cm-2 at an overpotential of 1.23 V vs RHE, which is 18.2 and 12 times higher than that of pure TNAs under the same conditions. The stability of the MoS2/TNAs heterojunction is higher than that of g-C3N4/TNAs.

8.
Environ Pollut ; 286: 117510, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34438483

ABSTRACT

Enhancing and investigating the photocatalytic activity over composites for new models remains a challenge. Here, an emerging S-scheme photocatalyst composed of 2D/0D g-C3N4 nanosheets-assisted SnO2 nanoparticles (g-C3N4/SnO2) is successfully synthesized and used for degrading nitrogen oxide (NO), which causes negative impacts on the environment. A wide range of characterization techniques confirms the successful synthesis of SnO2 nanoparticles, g-C3N4 nanosheets, and 2D/0D g-C3N4/SnO2 S-scheme photocatalysts via hydrothermal and annealing processes. Besides, the visible-light response is confirmed by optical analysis. The S-scheme charge transfer was elucidated by Density-Functional Theory (DFT) calculation, trapping experiments, and electron spin resonance (ESR). We found that intrinsic oxygen vacancies of SnO2 nanoparticles and S-scheme charge transfer addressed the limitation of other heterojunction types. It is notable that compared pure SnO2 nanoparticles and g-C3N4, g-C3N4/SnO2 offered the best photocatalytic NO degradation and photostability under visible light with the removal of more than 40% NO at 500 ppb throughout the experiment. Benefiting from the unique structural features, the new generation architectural structure of S-scheme heterojunction exhibited potential photocatalytic activity and it would simultaneously act more promising for environmental treatment in the coming years.


Subject(s)
Light , Nitric Oxide , Catalysis
9.
Chemosphere ; 268: 129291, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33359837

ABSTRACT

In this report, the peroxymonosulfate activation over Ag/ZnO heterojunction under visible light (Ag/ZnO/PMS/Vis) for p-nitrophenol (p-NP) contaminant degradation was conducted in detail. Herein, the catalyst dosage was decreased, and the results showed that a dosage of 0.5 g L-1 Ag/ZnO and 4 mM PMS almost completely degraded 30 mg L-1 p-NP after 90 min of irradiation. In addition, the PMS activation mechanism of Ag/ZnO/PMS/Vis system was proposed by investigations of the influence of PMS concentration, the FTIR spectra, UV-Vis spectroscopy, and electrochemical analyses. Additionally, the role of SO4•- in the photocatalytic reaction is determined by a combination of a trapping test using isopropanol and tert-butanol as probe compounds and electron spin resonance (ESR) spectroscopy. This report provides a potential alternative to remove persistent organic contaminants in sewage using PMS incorporated with Ag/ZnO under visible light irradiation.


Subject(s)
Zinc Oxide , Light , Nitrophenols , Peroxides , Silver
10.
ACS Omega ; 5(32): 20438-20449, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32832797

ABSTRACT

The pursuit of robust photocatalysts that can completely degrade organic contaminants with high performance as well as high energy efficiency, simplicity in preparation, and low cost is an appealing topic that potentially promotes photocatalysts for being used widely. Herein, we introduce a new and efficient SnO2/Bi2S3/BiOCl-Bi24O31Cl10 (SnO2/Bi2S3-Bi25) composite photocatalyst by taking advantage of the robust, simple, and potentially scalable one-pot synthesis, including the hydrothermal process followed by thermal decomposition. Interestingly, we observed the formation of BiOCl-Bi24O31Cl10 (abbreviated as Bi25) heterojunctions derived from reactions between Bi2S3 and SnCl4·5H2O precursor solutions under the hydrothermal condition and thermal decomposition of BiOCl. This Bi25 heterojunction acts as an interface to reduce the recombination of photogenerated electron-hole (e--h+) pairs as well as to massively enhance the visible light harvesting, thereby significantly enhancing the photocatalytic degradation performance of the as-prepared composite photocatalyst. In detail, the photocatalytic degradation of Rhodamine B (RhB) activated by visible light using 15% SnO2/Bi2S3-Bi25 shows the efficiency of 80.8%, which is superior compared to that of pure Bi2S3 (29.4%) and SnO2 (0.1%). The SnO2/Bi2S3-Bi25 composite photocatalyst also presents an excellent photostability and easy recovery from dye for recycling. The trapping test revealed that the photogenerated holes play a crucial factor during the photocatalytic process, whereas superoxide radicals are also formed but not involved in the photocatalytic process. Successful fabrication of SnO2/Bi2S3-Bi25 composite photocatalysts via a straightforward method with drastically enhanced photocatalytic performance under visible light activation would be useful for practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...