Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aerobiologia (Bologna) ; 32(4): 607-617, 2016.
Article in English | MEDLINE | ID: mdl-27890966

ABSTRACT

The most recent IPCC report presented further scientific evidence for global climate change in the twenty-first century. Important secondary effects of climate change include those on water resource availability, agricultural yields, urban healthy living, biodiversity, ecosystems, food security, and public health. The aim of this explorative study was to determine the range of expected airborne pathogen concentrations during a single outbreak or release in a future climate compared to a historical climatic period (1981-2010). We used five climate scenarios for the periods 2016-2045 and 2036-2065 defined by the Royal Netherlands Meteorological Institute and two conversion tools to create hourly future meteorological data sets. We modelled season-averaged airborne pathogen concentrations by means of an atmospheric dispersion model and compared these data to historical (1981-2010) modelled concentrations. Our results showed that modelled concentrations were modified several percentage points on average as a result of climate change. On average, concentrations were reduced in four out of five scenarios. Wind speed and global radiation were of critical importance, which determine horizontal and vertical dilution. Modelled concentrations decreased on average, but large positive and negative hourly averaged effects were calculated (from -67 to +639 %). This explorative study shows that further research should include pathogen inactivation and more detailed probability functions on precipitation, snow, and large-scale circulation.

2.
Microb Risk Anal ; 1: 19-39, 2016 Jan.
Article in English | MEDLINE | ID: mdl-32289056

ABSTRACT

In this review we discuss studies that applied atmospheric dispersion models (ADM) to bioaerosols that are pathogenic to humans and livestock in the context of risk assessment studies. Traditionally, ADMs have been developed to describe the atmospheric transport of chemical pollutants, radioactive matter, dust, and particulate matter. However, they have also enabled researchers to simulate bioaerosol dispersion. To inform risk assessment, the aims of this review were fourfold, namely (1) to describe the most important physical processes related to ADMs and pathogen transport, (2) to discuss studies that focused on the application of ADMs to pathogenic bioaerosols, (3) to discuss emission and inactivation rate parameterisations, and (4) to discuss methods for conversion of concentrations to infection probabilities (concerning quantitative microbial risk assessment). The studies included human, livestock, and industrial sources. Important factors for dispersion included wind speed, atmospheric stability, topographic effects, and deposition. Inactivation was mainly governed by humidity, temperature, and ultraviolet radiation. A majority of the reviewed studies, however, lacked quantitative analyses and application of full quantitative microbial risk assessments (QMRA). Qualitative conclusions based on geographical dispersion maps and threshold doses were encountered frequently. Thus, to improve risk assessment for future outbreaks and releases, we recommended determining well-quantified emission and inactivation rates and applying dosimetry and dose-response models to estimate infection probabilities in the population at risk.

SELECTION OF CITATIONS
SEARCH DETAIL
...