Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(39): eadg8229, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37774028

ABSTRACT

In this study, we present the structures of human urea transporters UT-A and UT-B to characterize them at molecular level and to detail the mechanism of UT-B inhibition by its selective inhibitor, UTBinh-14. High-resolution structures of both transporters establish the structural basis for the inhibitor's selectivity to UT-B, and the identification of multiple binding sites for the inhibitor will aid with the development of drug lead molecules targeting both transporters. Our study also discovers phospholipids associating with the urea transporters by combining structural observations, native MS, and lipidomics analysis. These insights improve our understanding of urea transporter function at a molecular level and provide a blueprint for a structure-guided design of therapeutics targeting these transporters.


Subject(s)
Membrane Transport Proteins , Urea , Humans , Membrane Transport Proteins/metabolism , Binding Sites , Urea/pharmacology , Urea/metabolism , Urea Transporters
2.
Nat Struct Mol Biol ; 30(4): 551-563, 2023 04.
Article in English | MEDLINE | ID: mdl-36959263

ABSTRACT

The adipokine Leptin activates its receptor LEP-R in the hypothalamus to regulate body weight and exerts additional pleiotropic functions in immunity, fertility and cancer. However, the structure and mechanism of Leptin-mediated LEP-R assemblies has remained unclear. Intriguingly, the signaling-competent isoform of LEP-R is only lowly abundant amid several inactive short LEP-R isoforms contributing to a mechanistic conundrum. Here we show by X-ray crystallography and cryo-EM that, in contrast to long-standing paradigms, Leptin induces type I cytokine receptor assemblies featuring 3:3 stoichiometry and demonstrate such Leptin-induced trimerization of LEP-R on living cells via single-molecule microscopy. In mediating these assemblies, Leptin undergoes drastic restructuring that activates its site III for binding to the Ig domain of an adjacent LEP-R. These interactions are abolished by mutations linked to obesity. Collectively, our study provides the structural and mechanistic framework for how evolutionarily conserved Leptin:LEP-R assemblies with 3:3 stoichiometry can engage distinct LEP-R isoforms to achieve signaling.


Subject(s)
Adipokines , Leptin , Leptin/genetics , Leptin/metabolism , Leptin/pharmacology , Protein Isoforms/genetics , Signal Transduction
3.
Environ Microbiol ; 19(10): 3930-3937, 2017 10.
Article in English | MEDLINE | ID: mdl-28488744

ABSTRACT

Several bacterial species produce membrane vesicles (MVs) in response to antibiotic stress. However, the biogenesis and role of MVs in bacterial antibiotic resistance mechanisms have remained unclear. Here, we studied the effect of the fluoroquinolone ciprofloxacin on MV secretion by Stenotrophomonas maltophilia using a combination of electron microscopy and proteomic approaches. We found that in addition to the classical outer membrane vesicles (OMV), ciprofloxacin-stimulated cultures produced larger vesicles containing both outer and inner membranes termed outer-inner membrane vesicles (OIMV), and that such MVs are enriched with cytosolic proteins. Remarkably, OIMV were found to be decorated with filamentous structures identified as fimbriae. In addition, ciprofloxacin stress leads to the release of bacteriophages and phage tail-like particles. Prophage induction by ciprofloxacin has been linked to pathogenesis and horizontal gene transfer in several bacterial species. Together, our findings show that ciprofloxacin treatment of S. maltophilia leads to the secretion of a heterogeneous pool of MVs and the induction of prophages that are potentially involved in adverse side-effects during antibiotic treatment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Prophages/physiology , Secretory Vesicles/drug effects , Stenotrophomonas maltophilia/drug effects , Virus Activation/drug effects , Drug Resistance, Bacterial/drug effects , Fluoroquinolones/metabolism , Microbial Sensitivity Tests , Prophages/genetics , Proteomics , Secretory Vesicles/ultrastructure , Stenotrophomonas maltophilia/ultrastructure , Stenotrophomonas maltophilia/virology
4.
Front Microbiol ; 6: 298, 2015.
Article in English | MEDLINE | ID: mdl-25926824

ABSTRACT

Outer membrane vesicles (OMVs) are small nanoscale structures that are secreted by bacteria and that can carry nucleic acids, proteins, and small metabolites. They can mediate intracellular communication and play a role in virulence. In this study, we show that treatment with the ß-lactam antibiotic imipenem leads to a dramatic increase in the secretion of outer membrane vesicles in the nosocomial pathogen Stenotrophomonas maltophilia. Proteomic analysis of their protein content demonstrated that the OMVs contain the chromosomal encoded L1 metallo-ß-lactamase and L2 serine-ß-lactamase. Moreover, the secreted OMVs contain large amounts of two Ax21 homologs, i.e., outer membrane proteins known to be involved in virulence and biofilm formation. We show that OMV secretion and the levels of Ax21 in the OMVs are dependent on the quorum sensing diffusible signal system (DSF). More specific, we demonstrate that the S. maltophilia DSF cis-Δ2-11-methyl-dodecenoic acid and, to a lesser extent, the Burkholderia cenocepacia DSF cis-Δ2-dodecenoic acid, stimulate OMV secretion. By a targeted proteomic analysis, we confirmed that DSF-induced OMVs contain large amounts of the Ax21 homologs, but not the ß-lactamases. This work illustrates that both quorum sensing and disturbance of the peptidoglycan biosynthesis provoke the release of OMVs and that OMV content is context dependent.

SELECTION OF CITATIONS
SEARCH DETAIL
...