Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(31): 20182-20190, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35919609

ABSTRACT

Large scale supercapacitor electrodes were prepared by 3D-printing directly on a graphite paper substrate from ink solution containing manganese cobalt sulfide/reduced graphene oxide (MCS/rGO) nanocomposites. The MCS/rGO composite solution was synthesized through the dispersion of MCS NPs and rGO in dimethylformamide (DMF) solvent at room temperature. Their morphology and composition were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray diffraction (EDS). The role of rGO on decreasing charge transfer resistance and enhancing ion exchange was discussed. The MCS/rGO electrode exhibits an excellent specific capacitance of 3812.5 F g-1 at 2 A g-1 and it maintains 1780.8 F g-1 at a high current density of 50 A g-1. The cycling stability of the electrodes reveals capacitance retention of over 92% after 22 000 cycles at 50 A g-1.

2.
Bull Environ Contam Toxicol ; 106(6): 1017-1023, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33743019

ABSTRACT

In this work, reduced graphene oxide/double-walled carbon nanotubes/octahedral-Fe3O4/chitosan composite material modified screen-printed gold electrodes (rGO/DWCNTs/Oct-Fe3O4/Cs/SPAuE) under inhibition of urease enzyme was developed for the determination of glyphosate (GLY). The electrochemical behaviors of GLY on these electrodes were evaluated by square wave voltammetry (SWV). With the electroactive surface area is 1.7 times higher than that of bare SPAuE, the rGO/DWCNTs/Oct-Fe3O4/Cs/SPAuE for detection of GLY shows a low detection limit (LOD) of ~ 0.08 ppb in a large concentration range of 0.1-1000 ppb. Moreover, it is also successfully applied to the determination of GLY in river water samples with recoveries and relative standard deviations (RSDs) from 98.7% to 106.9% and from 0.79% to 0.87%, respectively. The developed composite will probably provide an universal electrochemical sensing platform that is very promising for environmental monitoring.


Subject(s)
Chitosan , Graphite , Nanotubes, Carbon , Electrochemical Techniques , Electrodes , Glycine/analogs & derivatives , Limit of Detection , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...