Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 60(5): 2610-9, 2016 05.
Article in English | MEDLINE | ID: mdl-26824936

ABSTRACT

Trypanozoon parasites infect both humans, causing sleeping sickness, and animals, causing nagana, surra, and dourine. Control of nagana and surra depends to a great extent on chemotherapy. However, drug resistance to several of the front-line drugs is rising. Furthermore, there is no official treatment for dourine. Therefore, there is an urgent need to develop antiparasitic agents with novel modes of action. Host defense peptides have recently gained attention as promising candidates. We have previously reported that one such peptide, the equine antimicrobial peptide eCATH1, is highly active against equine Gram-positive and Gram-negative bacteria, without cytotoxicity against mammalian cells at bacteriolytic concentrations. In the present study, we show that eCATH1 exhibits an in vitro 50% inhibitory concentration (IC50) of 9.5 µM against Trypanosoma brucei brucei, Trypanosoma evansi, and Trypanosoma equiperdum Its trypanocidal mechanism involves plasma membrane permeabilization and mitochondrial alteration based on the following data: (i) eCATH1 induces the rapid influx of the vital dye SYTOX Green; (ii) it rapidly disrupts mitochondrial membrane potential, as revealed by immunofluorescence microscopy using the fluorescent dye rhodamine 123; (iii) it severely damages the membrane and intracellular structures of the parasites as early as 15 min after exposure at 9.5 µM and 5 min after exposure at higher concentrations (19 µM), as evidenced by scanning and transmission electron microscopy. We also demonstrate that administration of eCATH1 at a dose of 10 mg/kg to T. equiperdum-infected mice delays mortality. Taken together, our findings suggest that eCATH1 is an interesting template for the development of novel therapeutic agents in the treatment of trypanosome infections.


Subject(s)
Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma/drug effects , Animals , Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Inhibitory Concentration 50 , Membrane Potential, Mitochondrial/drug effects , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Microscopy, Fluorescence
2.
Vet Parasitol ; 197(3-4): 571-9, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-23747105

ABSTRACT

Serodiagnosis of surra, which causes vast economic losses in livestock, is still based on native antigens purified from bloodstream form Trypanosoma (T.) evansi grown in rodents. To avoid the use of laboratory rodents in antigen preparation we expressed fragments of the invariant surface glycoprotein (ISG) 75, cloned from T. brucei gambiense cDNA, and the variant surface glycoprotein (VSG) RoTat 1.2, cloned from T. evansi gDNA, recombinantly in Pichia (P.) pastoris. The M5 strain of this yeast has an engineered N-glycosylation pathway resulting in homogenous Man5GlcNAc2 N-glycosylation which resembles the predominant Man9-5GlcNAc2 oligomannose structures in T. brucei. The secreted recombinant antigens were affinity purified with yields of up to 10mg and 20mg per liter cell culture of rISG 7529-465-E and rRoTat 1.223-385-H respectively. In ELISA, both recombinant proteins discriminated between pre-immune and immune serum samples of 25 goats experimentally infected with T. evansi. The diagnostic potential of rRoTat 1.223-385-H but not of rISG 7529-465-E was confirmed with sera of naturally infected and control dromedary camels. The results suggest that rRoTat 1.223-385-H expressed in P. pastoris requires further evaluation before it could replace native RoTat 1.2 VSG for serodiagnosis of surra, thus eliminating the use of laboratory animals for antigen production.


Subject(s)
Gene Expression Regulation/physiology , Pichia/metabolism , Protozoan Proteins/metabolism , Trypanosoma/metabolism , Animals , Dog Diseases/prevention & control , Dogs , Female , Protozoan Proteins/genetics , Time Factors , Trypanosoma/isolation & purification
3.
Exp Parasitol ; 128(3): 285-90, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21354143

ABSTRACT

Trypanosoma brucei (T.b.) gambiense causes the chronic form of human African trypanosomiasis or sleeping sickness. One of the major problems with studying T.b. gambiense is the difficulty to isolate it from its original host and the difficult adaptation to in vivo and in vitro mass propagation. The objective of this study was to evaluate if an established method for axenic culture of pleomorphic bloodstream form T.b. brucei strains, based on methylcellulose containing HMI-9 medium, also facilitated the continuous in vitro propagation of other bloodstream form Trypanozoon strains, in particular of T.b. gambiense. Bloodstream form trypanosomes from one T.b. brucei, two T.b. rhodesiense, one T. evansi and seven T.b. gambiense strains were isolated from mouse blood and each was concurrently cultivated in liquid and methylcellulose-containing HMI-9 based medium, either with or without additional human serum supplementation, for over 10 consecutive sub passages. Although HMI-9 based medium supplemented with 1.1% (w/v) methylcellulose supported the continuous cultivation of all non-gambiense strains better than liquid media could, the in vitro cultivation of all gambiense strains was only achieved in HMI-9 based medium containing 1.1% (w/v) methylcellulose, 15% (v/v) fetal calf serum and 5% (v/v) heat-inactivated human serum.


Subject(s)
Culture Media/chemistry , Methylcellulose , Serum , Trypanosoma brucei gambiense/growth & development , Trypanosomiasis, African/parasitology , Animals , Female , Freezing , Humans , Mice , Trypanosoma brucei gambiense/classification , Trypanosoma brucei gambiense/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...