Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 32(10): 2224-2232, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34543022

ABSTRACT

We demonstrate the ability to distinguish Pb2+ from K+ within the central cavity of the antiparallel G-quadruplex (GQ) DNA produced by the thrombin binding aptamer (TBA) using an internal molecular rotor fluorescent probe. An indole-aldehyde containing an acyclic N-glycol group was first employed in the on-strand Knoevenagel condensation with five different heterocyclic quaternary cationic acceptors to assess the molecular rotor character of the resulting cyanine-styryl dyes within duplex DNA. An indole-pyridinium (4PI) nucleobase surrogate displayed the greatest turn-on emission response to duplex formation and was thus inserted into the loop residues of TBA to monitor GQ-folding in the presence of Pb2+ versus K+. TBA-4PI exhibits turn-on emission upon Pb2+-binding with a brightness (ε·Φfl) of 9000 cm-1 M-1 compared to K+-binding (ε·Φfl ∼ 2000 cm-1 M-1) due to Pb2+-induced GQ rigidity with 4PI-G-tetrad stacking interactions. The Pb2+-bound TBA-4PI GQ also provides energy-transfer (ET) fluorescence with a diagnostic excitation at 310 nm for distinguishing Pb2+ from K+ within the antiparallel GQ. The TBA-4PI GQ affords the desired turn-on fluorescence response for detecting Pb2+ ions with an apparent dissociation constant (Kd) of 63 nM and a limit of detection (LOD) of 19 nM in an aqueous buffer. It can also distinguish Pb2+ (230 nM) from K+ (1.5 mM, 6500-fold excess) in an antiparallel GQ recognition motif without topology twitching.


Subject(s)
Carbocyanines , Fluorescence , G-Quadruplexes , Lead
2.
Bioconjug Chem ; 32(8): 1791-1801, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34138558

ABSTRACT

Donor-acceptor biaryls serve as microenvironment fluorescent sensors with highly quenched intramolecular charge transfer (ICT) emission in polar protic solvents that turns on in aprotic media. In DNA, canonical donor-acceptor fluorescent base analogs can be prepared through on-strand Suzuki-Miyaura cross-coupling reactions involving 8-bromo-2'-deoxyguanosine (8-Br-dG) with an acceptor aryboronic acid. Herein, we demonstrate that replacement of 8-Br-dG with N-methyl-4-bromoaniline (4-Br-An) containing an acyclic N-glycol group can be employed in the on-strand Suzuki-Miyaura reaction to afford new donor-acceptor biaryl nucleobase surrogates with a 40-fold increase in emission intensity for fluorescent readout within single-strand oligonucleotides. Screening the best acceptor for turn-on fluorescence upon duplex formation afforded the carboxythiophene derivative [COOTh]An with a 7.4-fold emission intensity increase upon formation of a single-bulged duplex (-1) with the surrogate occupying a pyrimidine-flanked bulge. Insertion of the [COOTh]An surrogate into the lateral TT loops produced by the antiparallel G-quadruplex (GQ) of the thrombin binding aptamer (TBA) afforded a 4.1-fold increase in probe fluorescence that was accompanied by a 20 nm wavelength shift to the blue upon thrombin binding. The modified TBA afforded a limit of detection of 129 nM for thrombin and displayed virtually no emission response to off-target proteins. The fluorescence response of [COOTh]An to thrombin binding highlights the utility of the thienyl-aniline moiety for monitoring DNA-protein interactions.


Subject(s)
Aniline Compounds/chemistry , Fluorescent Dyes/chemical synthesis , Oligonucleotides/chemistry , Proteins/chemistry , Thiophenes/chemistry , Fluorescent Dyes/chemistry , G-Quadruplexes , Molecular Structure , Nucleic Acid Denaturation/radiation effects , Ultraviolet Rays
3.
J Org Chem ; 86(2): 1583-1590, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33356262

ABSTRACT

Merocyanine (MC) dyes containing an aromatic donor vinyl linked to a cationic acceptor serve as chemosensors for analyte detection. Their electrophilicity permits anion detection through addition reactions that disrupt dye conjugation. Herein, we demonstrate the temperature influence on thiolate addition to MCs containing the N-methylbenzothiazolium (Btz) acceptor. The zwitterionic phenolate dye (PhOBtz) displays impressive temperature sensitivity to thiolate addition, with the brightly colored phenolate favored upon heating and the colorless thiolate adduct favored upon cooling. In contrast, MC dyes containing neutral donors (PhOMeBtz and PhNMe2Btz) display only moderate temperature sensitivity to thiolate capture and release. Extraction of thermodynamic parameters demonstrates a strong enthalpic driving force for thiolate addition to PhOBtz that is absent for PhOMeBtz and PhNMe2Btz. Variable temperature 1H NMR studies demonstrate that PhOBtz adopts the para-quinone methide (p-QM) resonance structure. Thus, thiolate addition to PhOBtz resembles 1,6-conjugate addition to p-QMs which is accompanied by a large increase in the π-stabilization energy upon adduct formation. Manipulation of PhOBtz electrophilicity by attaching chlorine substituents to the phenolate caused the thiolate adducts to dissipate over time for p-QM regeneration. Our work provides new design ideas for the utility of phenolate MC dyes, given that they are carriers of the p-QM electrophile.

4.
ACS Appl Bio Mater ; 4(9): 6732-6741, 2021 09 20.
Article in English | MEDLINE | ID: mdl-35006975

ABSTRACT

DNA three-way junctions (3WJs) consist of a Y-shaped hydrophobic branch point connecting three double-stranded stems and are viewed as druggable targets for cancer treatment. They are also important building blocks for the construction of DNA nanostructures and serve as recognition elements for DNA aptasensors for a wide variety of diagnostic applications. However, visible fluorescent light-up probes for specific staining of DNA 3WJs are currently lacking. Herein, we report that a merocyanine containing the N-methylbenzothiazolium (Btz) acceptor vinyl linked to a 2-fluorophenolic (FPhO) donor (FPhOBtz) serves as a universal fluorescent turn-on dye for DNA 3WJs. Our evidence is based on a multifaceted approach to define the specificity and affinity of FPhOBtz for 3WJ DNA aptamers; the cocaine binding aptamer MN4, the cholic acid binding aptamer (CABA), and four steroid aptamers (DOGS.1, DISS.1, BES.1, DCAS.1). FPhOBtz exhibits impressive turn-on (up to 730-fold) fluorescence at 580 nm upon aptamer binding with low micromolar affinity. Direct FPhOBtz displacement from the 3WJ binding domain through competitive alkaloid and steroid binding provides immediate fluorescent read out for host-guest detection strategies in human blood serum in the low micromolar regime. Our results present the first visible light-up fluorescent probe for DNA 3WJ detection strategies.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence
5.
Bioconjug Chem ; 31(11): 2596-2606, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33156614

ABSTRACT

Fluorescent nucleobases represent an important class of molecular reporters of nucleic acid interactions. In this work, the advantages of utilizing a noncanonical fluorescent nucleobase surrogate for monitoring thrombin binding by the 15-mer thrombin binding aptamer (TBA) is presented. TBA folds into an antiparallel G-quadruplex (GQ) with loop thymidine (T) residues interacting directly with the protein in the thrombin-TBA complex. In the free GQ, T3 is solvent-exposed and does not form canonical base-pairs within the antiparallel GQ motif. Upon thrombin binding, T3 interacts directly with a hydrophobic protein binding pocket. Replacing T3 with a cyanine-indole-quinolinium (4QI) hemicyanine dye tethered to an acyclic 1,2-propanediol linker is shown to have minimal impact on GQ stability and structure with the internal 4QI displaying a 40-fold increase in emission intensity at 586 nm (excitation 508 nm) compared to the free dye in solution. Molecular dynamics (MD) simulations demonstrate that the 4QI label π-stacks with T4 and T13 within the antiparallel GQ fold, which is supported by strong energy transfer (ET) fluorescence from the GQ (donor) to the 4QI label (acceptor). Thrombin binding to 4QI-TBA diminishes π-stacking interactions between 4QI and the GQ structure to cause a turn-off emission intensity response with an apparent dissociation constant (Kd) of 650 nM and a limit of detection (LoD) of 150 nM. These features highlight the utility of internal noncanonical fluorescent surrogates for monitoring protein binding by GQ-folding aptamers in the absence of DNA topology switching.


Subject(s)
Aptamers, Nucleotide/chemistry , Coloring Agents/chemistry , G-Quadruplexes , Indoles/chemistry , Quinolines/chemistry , Amides/chemistry , Aptamers, Nucleotide/pharmacology , Fluorescence , Limit of Detection , Molecular Dynamics Simulation , Phosphoric Acids/chemistry , Structure-Activity Relationship
6.
Org Biomol Chem ; 16(20): 3831-3840, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29745412

ABSTRACT

Chemically modified aptamers have the opportunity to increase aptamer target binding affinity and provide structure-activity relationships to enhance our understanding of molecular target recognition by the aptamer fold. In the current study, 8-aryl-2'-deoxyguanosine nucleobases have been inserted into the G-tetrad and central TGT loop of the thrombin binding aptamer (TBA) to determine their impact on antiparallel G-quadruplex (GQ) folding and thrombin binding affinity. The aryl groups attached to the dG nucleobase vary greatly in aryl ring size and impact on GQ stability (∼20 °C change in GQ thermal melting (Tm) values) and thrombin binding affinity (17-fold variation in dissociation constant (Kd)). At G8 of the central TGT loop that is distal from the aptamer recognition site, the probes producing the most stable GQ structure exhibited the strongest thrombin binding affinity. However, within the G-tetrad, changes to the electron density of the dG component within the modified nucleobase can diminish thrombin binding affinity. Detailed molecular dynamics (MD) simulations on the modified TBA (mTBA) and mTBA-protein complexes demonstrate how the internal 8-aryl-dG modification can manipulate the interactions between the DNA nucleobases and the amino acid residues of thrombin. These results highlight the potential of internal fluorescent nuclobase analogs (FBAs) to broaden design options for aptasensor development.


Subject(s)
Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Guanine/chemistry , Thrombin/metabolism , Aptamers, Nucleotide/genetics , Binding Sites , G-Quadruplexes , Molecular Dynamics Simulation , Protein Binding
7.
ACS Chem Biol ; 11(9): 2576-82, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27447371

ABSTRACT

The simple 5-furyl-2'-deoxyuridine ((Fur)dU) nucleobase exhibits dual probing characteristics displaying emissive sensitivity to changes in microenvironment polarity and to changes in solvent rigidity due to its molecular rotor character. Here, we demonstrate its ability to define the microenvironment of the various thymidine (T) loop residues within the thrombin binding aptamer (TBA) upon antiparallel G-quadruplex (GQ) folding and thrombin binding. The emissive sensitivity of the (Fur)dU probe to microenvironment polarity provides a diagnostic handle to distinguish T bases that are solvent-exposed within the GQ structure compared with probe location in the apolar duplex. Its molecular rotor properties then provide a turn-on fluorescent switch to identify which T residues within the GQ bind specifically to the protein target (thrombin). The fluorescence sensing characteristics of (Fur)dU make it an attractive tool for mapping aptamer-protein interactions at the nucleoside level for further development of modified aptamers for a wide range of diagnostic and therapeutic applications.


Subject(s)
Aptamers, Nucleotide/chemistry , Nucleosides/chemistry , Aptamers, Nucleotide/metabolism , Circular Dichroism , Nucleosides/metabolism , Spectrometry, Fluorescence , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet , Thrombin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...