Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cancers (Basel) ; 13(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34680368

ABSTRACT

The transmembrane glycoprotein cluster of differentiation 19 (CD19) is a B cell-specific surface marker, expressed on the majority of neoplastic B cells, and has recently emerged as a very attractive biomarker and therapeutic target for B-cell malignancies. The development of safe and effective ligands for CD19 has become an important need for the development of targeted conventional and immunotherapies. In this regard, aptamers represent a very interesting class of molecules. Additionally referred to as 'chemical antibodies', they show many advantages as therapeutics, including low toxicity and immunogenicity. Here, we isolated a nuclease-resistant RNA aptamer binding to the human CD19 glycoprotein. In order to develop an aptamer also useful as a carrier for secondary reagents, we adopted a cell-based SELEX (Systematic Evolution of Ligands by EXponential Enrichment) protocol adapted to isolate aptamers able to internalise upon binding to their cell surface target. We describe a 2'-fluoro pyrimidine modified aptamer, named B85.T2, which specifically binds to CD19 and shows an exquisite stability in human serum. The aptamer showed an estimated dissociation constant (KD) of 49.9 ± 13 nM on purified human recombinant CD19 (rhCD19) glycoprotein, a good binding activity on human B-cell chronic lymphocytic leukaemia cells expressing CD19, and also an effective and rapid cell internalisation, thus representing a promising molecule for CD19 targeting, as well as for the development of new B-cell malignancy-targeted therapies.

3.
Methods Mol Biol ; 1881: 267-276, 2019.
Article in English | MEDLINE | ID: mdl-30350212

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs that target specific mRNAs through interaction with complementary sequences usually found in the 3'-untranslated regions (UTRs) of target mRNAs. miRNAs have been shown to play a fundamental role in the management of chronic lymphocytic leukemia (CLL) by modulating gene expression patterns and cellular signaling pathways. In recent years, several studies have focused on the role of regulatory miRNAs in the pathogenesis of CLL. Aberrant expression of CLL-specific miRNAs has emerged as therapeutic and diagnostic biomarkers in patients with CLL. Here, we describe a method for the quantification of miRNAs in malignant B cells from the mononuclear cell compartment, isolated from peripheral blood. We focus on the isolation of human blood monocytes by Ficoll-Paque gradient centrifugation, total RNA extraction from human peripheral blood mononuclear cells, and quantitative reverse transcription (qRT)-PCR, which is useful for the measurement of miRNAs in monocytes isolated from blood samples.


Subject(s)
B-Lymphocytes/metabolism , Biomarkers, Tumor/blood , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukocytes, Mononuclear/metabolism , MicroRNAs/blood , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , B-Lymphocytes/pathology , Biomarkers, Tumor/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukocytes, Mononuclear/pathology , MicroRNAs/genetics
4.
Haematologica ; 104(5): 1004-1015, 2019 05.
Article in English | MEDLINE | ID: mdl-30409799

ABSTRACT

Richter syndrome is the name given to the transformation of the most frequent type of leukemia, chronic lymphocytic leukemia, into an aggressive lymphoma. Patients with Richter syndrome have limited response to therapies and dismal survival. The underlying mechanisms of transformation are insufficiently understood and there is a major lack of knowledge regarding the roles of microRNA that have already proven to be causative for most cases of chronic lymphocytic leukemia. Here, by using four types of genomic platforms and independent sets of patients from three institutions, we identified microRNA involved in the transformation of chronic lymphocytic leukemia to Richter syndrome. The expression signature is composed of miR-21, miR-150, miR-146b and miR-181b, with confirmed targets significantly enriched in pathways involved in cancer, immunity and inflammation. In addition, we demonstrated that genomic alterations may account for microRNA deregulation in a subset of cases of Richter syndrome. Furthermore, network analysis showed that Richter transformation leads to a complete rearrangement, resulting in a highly connected microRNA network. Functionally, ectopic overexpression of miR-21 increased proliferation of malignant B cells in multiple assays, while miR-150 and miR-26a were downregulated in a chronic lymphocytic leukemia xenogeneic mouse transplantation model. Together, our results suggest that Richter transformation is associated with significant expression and genomic loci alterations of microRNA involved in both malignancy and immunity.


Subject(s)
Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , MicroRNAs/genetics , Adult , Aged , Animals , Apoptosis , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Female , Follow-Up Studies , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Prognosis , Syndrome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Genome Res ; 28(4): 432-447, 2018 04.
Article in English | MEDLINE | ID: mdl-29567676

ABSTRACT

The cancer-risk-associated rs6983267 single nucleotide polymorphism (SNP) and the accompanying long noncoding RNA CCAT2 in the highly amplified 8q24.21 region have been implicated in cancer predisposition, although causality has not been established. Here, using allele-specific CCAT2 transgenic mice, we demonstrate that CCAT2 overexpression leads to spontaneous myeloid malignancies. We further identified that CCAT2 is overexpressed in bone marrow and peripheral blood of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) patients. CCAT2 induces global deregulation of gene expression by down-regulating EZH2 in vitro and in vivo in an allele-specific manner. We also identified a novel non-APOBEC, non-ADAR, RNA editing at the SNP locus in MDS/MPN patients and CCAT2-transgenic mice. The RNA transcribed from the SNP locus in malignant hematopoietic cells have different allelic composition from the corresponding genomic DNA, a phenomenon rarely observed in normal cells. Our findings provide fundamental insights into the functional role of rs6983267 SNP and CCAT2 in myeloid malignancies.


Subject(s)
Cell Proliferation/genetics , Myelodysplastic-Myeloproliferative Diseases/genetics , RNA, Long Noncoding/genetics , Adult , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Myelodysplastic-Myeloproliferative Diseases/pathology , Polymorphism, Single Nucleotide/genetics , RNA Editing/genetics
6.
Cancer Metastasis Rev ; 37(1): 33-44, 2018 03.
Article in English | MEDLINE | ID: mdl-29282605

ABSTRACT

Small non-coding microRNAs (miRNAs) are instrumental in physiological processes, such as proliferation, cell cycle, apoptosis, and differentiation, processes which are often disrupted in diseases like cancer. miR-155 is one of the best conserved and multifunctional miRNAs, which is mainly characterized by overexpression in multiple diseases including malignant tumors. Altered expression of miR-155 is found to be associated with various physiological and pathological processes, including hematopoietic lineage differentiation, immune response, inflammation, and tumorigenesis. Furthermore, miR-155 drives therapy resistance mechanisms in various tumor types. Therefore, miR-155-mediated signaling pathways became a potential target for the molecular treatment of cancer. In this review, we summarize the current findings of miR-155 in hematopoietic lineage differentiation, the immune response, inflammation, and cancer therapy resistance. Furthermore, we discuss the potential of miR-155-based therapeutic approaches for the treatment of cancer.


Subject(s)
Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Genetic Therapy , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/therapy , Animals , Biomarkers, Tumor , ErbB Receptors/antagonists & inhibitors , Humans , Molecular Targeted Therapy , Neoplasms/diagnosis , Oncogenes , Radiation Tolerance/genetics
8.
Mol Oncol ; 11(12): 1673-1686, 2017 12.
Article in English | MEDLINE | ID: mdl-29024380

ABSTRACT

Mammalian cells can release different types of extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies. Accumulating evidence suggests that EVs play a role in cell-to-cell communication within the tumor microenvironment. EVs' components, such as proteins, noncoding RNAs [microRNAs (miRNAs), and long noncoding RNAs (lncRNAs)], messenger RNAs (mRNAs), DNA, and lipids, can mediate paracrine signaling in the tumor microenvironment. Recently, miRNAs encapsulated in secreted EVs have been identified in the extracellular space. Mature miRNAs that participate in intercellular communication are released from most cells, often within EVs, and disseminate through the extracellular fluid to reach remote target cells, including tumor cells, whose phenotypes they can influence by regulating mRNA and protein expression either as tumor suppressors or as oncogenes, depending on their targets. In this review, we discuss the roles of miRNAs in intercellular communication, the biological function of extracellular miRNAs, and their potential applications for diagnosis and therapeutics. We will give examples of miRNAs that behave as hormones.


Subject(s)
Cell Communication , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Animals , Exosomes/genetics , Exosomes/metabolism , Extracellular Vesicles/genetics , Humans , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/metabolism , Paracrine Communication , Tumor Microenvironment
9.
Adv Cancer Res ; 135: 119-149, 2017.
Article in English | MEDLINE | ID: mdl-28882220

ABSTRACT

Human cancers are characterized by a number of hallmarks, including sustained proliferative signaling, evasion of growth suppressors, activated invasion and metastasis, replicative immortality, angiogenesis, resistance to cell death, and evasion of immune destruction. As microRNAs (miRNAs) are deregulated in virtually all human cancers, they show involvement in each of the cancer hallmarks as well. In this chapter, we describe the involvement of miRNAs in cancer from a cancer hallmarks and targeted therapeutics point of view. As no miRNA-based cancer therapeutics are available to date, and the only clinical trial on miRNA-based cancer therapeutics (MRX34) was terminated prematurely due to serious adverse events, we are focusing on protein-coding miRNA targets for which targeted therapeutics in oncology are already approved by the FDA. For each of the cancer hallmarks, we selected major protein-coding players and describe the miRNAs that target them.


Subject(s)
MicroRNAs/genetics , Neoplasms/genetics , Animals , Humans
10.
Clin Cancer Res ; 23(11): 2891-2904, 2017 06 01.
Article in English | MEDLINE | ID: mdl-27903673

ABSTRACT

Purpose: The oncogenic miR-155 is upregulated in many human cancers, and its expression is increased in more aggressive and therapy-resistant tumors, but the molecular mechanisms underlying miR-155-induced therapy resistance are not fully understood. The main objectives of this study were to determine the role of miR-155 in resistance to chemotherapy and to evaluate anti-miR-155 treatment to chemosensitize tumors.Experimental Design: We performed in vitro studies on cell lines to investigate the role of miR-155 in therapy resistance. To assess the effects of miR-155 inhibition on chemoresistance, we used an in vivo orthotopic lung cancer model of athymic nude mice, which we treated with anti-miR-155 alone or in combination with chemotherapy. To analyze the association of miR-155 expression and the combination of miR-155 and TP53 expression with cancer survival, we studied 956 patients with lung cancer, chronic lymphocytic leukemia, and acute lymphoblastic leukemia.Results: We demonstrate that miR-155 induces resistance to multiple chemotherapeutic agents in vitro, and that downregulation of miR-155 successfully resensitizes tumors to chemotherapy in vivo We show that anti-miR-155-DOPC can be considered non-toxic in vivo We further demonstrate that miR-155 and TP53 are linked in a negative feedback mechanism and that a combination of high expression of miR-155 and low expression of TP53 is significantly associated with shorter survival in lung cancer.Conclusions: Our findings support the existence of an miR-155/TP53 feedback loop, which is involved in resistance to chemotherapy and which can be specifically targeted to overcome drug resistance, an important cause of cancer-related death. Clin Cancer Res; 23(11); 2891-904. ©2016 AACR.


Subject(s)
Antagomirs/administration & dosage , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , MicroRNAs/genetics , Animals , Cell Line, Tumor , Cisplatin/administration & dosage , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , MicroRNAs/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics
11.
Semin Oncol ; 43(2): 209-14, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27040698

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a heterogeneous disease and has a highly variable clinical course with survival ranging from a couple of months to several decades. MicroRNAs (miRNAs), small non-coding RNAs that regulate transcription and translation of genes, have been found to be involved in CLL initiation, progression, and resistance to therapy. In addition, they can be used as prognostic biomarkers and as targets for novel therapies. In this review, we describe the association between miRNAs and the cytogenetic aberrations commonly found in CLL, as well as with other prognostic factors. We describe the presence of miRNAs as extracellular entities in the plasma and serum of CLL patients and discuss their role in resistance to therapy. Finally, we will explore the potential of targeted miRNA therapy for the treatment of CLL, with a special emphasis on MRX34, the first miRNA mimic that is currently being evaluated for clinical use.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/genetics , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chromosome Aberrations , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Leukemic/drug effects , Genetic Therapy/methods , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , MicroRNAs/blood , MicroRNAs/therapeutic use , Prognosis
12.
Blood ; 127(16): 1947-8, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27103742
13.
Mol Cell ; 61(4): 520-534, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26853146

ABSTRACT

Altered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA.


Subject(s)
Glutaminase/genetics , Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , Alleles , Alternative Splicing , Energy Metabolism , HCT116 Cells , Humans , Neoplasms/genetics , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA, Messenger/metabolism
14.
Genes Chromosomes Cancer ; 55(5): 428-41, 2016 May.
Article in English | MEDLINE | ID: mdl-26850007

ABSTRACT

The recurrent 9p24.1 aberrations in lymphoid malignancies potentially involving four cancer-related and druggable genes (JAK2, CD274/PDL1, PDCD1LG2/PDL2, and KDM4C/JMJD2Cl) are incompletely characterized. To gain more insight into the anatomy of these abnormalities, at first we studied 9p24.1 alterations in 18 leukemia/lymphoma cases using cytogenetic and molecular techniques. The aberrations comprised structural (nine cases) and numerical (nine cases) alterations. The former lesions were heterogeneous but shared a common breakpoint region of 200 kb downstream of JAK2. The rearrangements predominantly targeted the PDL locus. We have identified five potential partner genes of PDL1/2: PHACTR4 (1p34), N4BP2 (4p14), EEF1A1 (6q13), JAK2 (9p24.1), and IGL (22q11). Interestingly, the cryptic JAK2-PDL1 rearrangement was generated by a microdeletion spanning the 3'JAK2-5'PDL1 region. JAK2 was additionally involved in a cytogenetically cryptic IGH-mediated t(9;14)(p24.1;q32) found in two patients. This rare but likely underestimated rearrangement highlights the essential role of JAK2 in B-cell neoplasms. Cases with amplification of 9p24.1 were diagnosed as primary mediastinal B-cell lymphoma (five cases) and T-cell lymphoma (four cases). The smallest amplified 9p24.1 region was restricted to the JAK2-PDL1/2-RANBP6 interval. In the next step, we screened 200 cases of classical Hodgkin lymphoma by interphase FISH and identified PDL1/2 rearrangement (CIITA- and IGH-negative) in four cases (2%), what is a novel finding. Forty (25%) cases revealed high level amplification of 9p24.1, including four cases with a selective amplification of PDL1/2. Altogether, the majority of 9p24.1 rearrangements occurring in lymphoid malignancies seem to target the programmed death-1 ligands, what potentiates the therapeutic activity of PD-1 blockade in these tumors. © 2016 Wiley Periodicals, Inc.


Subject(s)
B7-H1 Antigen/genetics , Janus Kinase 2/genetics , Lymphoma/genetics , Mutation , Chromosome Banding , Gene Expression Profiling , Humans , Karyotyping
15.
Clin Cancer Res ; 22(10): 2359-67, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26733610

ABSTRACT

PURPOSE: We evaluated efficacy and tolerability of the combination of ofatumumab and lenalidomide in patients with relapsed/refractory chronic lymphocytic leukemia (CLL), and explored whether immune system characteristics could influence the response to treatment. EXPERIMENTAL DESIGN: Thirty-four patients were enrolled in this phase II study. Ofatumumab was administered at a dose of 300 mg on day 1, 1,000 mg on days 8, 15, and 22 during course 1, 1,000 mg on day 1 during courses 3-6, and once every other course during courses 7-24 (28-day courses). Oral lenalidomide (10 mg daily) was started on day 9 and continued for as long as a clinical benefit was observed. RESULTS: The overall response rate was 71%. Eight patients (24%) achieved a complete remission (CR) or CR with incomplete recovery of blood counts, including 9% with minimal residual disease-negative CR. The median progression-free survival was 16 months, and the estimated 5-year survival was 53%. The most common treatment-related toxicity was neutropenia (grade >2 in 18% of the 574 patient courses). The most frequent infectious complications were pneumonia and neutropenic fever (24% and 9% of patients, respectively). We observed that patients who achieved a CR had at baseline higher numbers and a better preserved function of T cells and natural killer cells compared with non-responders. CONCLUSIONS: The combination of ofatumumab and lenalidomide is a well-tolerated regimen that induces durable responses in the majority of patients with relapsed/refractory CLL. Our correlative data suggest a role of competent immune system in supporting the efficacy of this treatment. Clin Cancer Res; 22(10); 2359-67. ©2016 AACR.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Neoplasm Recurrence, Local/drug therapy , Thalidomide/analogs & derivatives , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized , Disease-Free Survival , Female , Humans , Lenalidomide , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Middle Aged , Thalidomide/therapeutic use , Treatment Outcome
17.
EBioMedicine ; 2(6): 572-82, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26288818

ABSTRACT

Although numerous studies highlighted the role of Epstein-Barr Virus (EBV) in B-cell transformation, the involvement of EBV proteins or genome in the development of the most frequent adult leukemia, chronic lymphocytic leukemia (CLL), has not yet been defined. We hypothesized that EBV microRNAs contribute to progression of CLL and demonstrated the presence of EBV miRNAs in B-cells, in paraffin-embedded bone marrow biopsies and in the plasma of patients with CLL by using three different methods (small RNA-sequencing, quantitative reverse transcription PCR [q-RT-PCR] and miRNAs in situ hybridization [miRNA-ISH]). We found that EBV miRNA BHRF1-1 expression levels were significantly higher in the plasma of patients with CLL compared with healthy individuals (p < 0 · 0001). Notably, BHRF1-1 as well as BART4 expression were detected in the plasma of either seronegative or seropositive (anti-EBNA-1 IgG and EBV DNA tested) patients; similarly, miRNA-ISH stained positive in bone marrow specimens while LMP1 and EBER immunohistochemistry failed to detect viral proteins and RNA. We also found that BHRF1-1 plasma expression levels were positively associated with elevated beta-2-microglobulin levels and advanced Rai stages and observed a correlation between higher BHRF1-1 expression levels and shorter survival in two independent patients' cohorts. Furthermore, in the majority of CLL cases where BHRF1-1 was exogenously induced in primary malignant B cells the levels of TP53 were reduced. Our findings suggest that EBV may have a role in the process of disease progression in CLL and that miRNA RT-PCR and miRNAs ISH could represent additional methods to detect EBV miRNAs in patients with CLL.


Subject(s)
Herpesvirus 4, Human/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/virology , MicroRNAs/genetics , Viral Proteins/genetics , Disease-Free Survival , Epstein-Barr Virus Nuclear Antigens/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , RNA, Viral/genetics , Tumor Cells, Cultured , Tumor Suppressor Protein p53 , Viral Matrix Proteins/genetics , Viral Proteins/blood , beta 2-Microglobulin/blood
18.
Proc Natl Acad Sci U S A ; 112(10): E1106-15, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25713380

ABSTRACT

Two decades after the discovery of the first animal microRNA (miRNA), the number of miRNAs in animal genomes remains a vexing question. Here, we report findings from analyzing 1,323 short RNA sequencing samples (RNA-seq) from 13 different human tissue types. Using stringent thresholding criteria, we identified 3,707 statistically significant novel mature miRNAs at a false discovery rate of ≤ 0.05 arising from 3,494 novel precursors; 91.5% of these novel miRNAs were identified independently in 10 or more of the processed samples. Analysis of these novel miRNAs revealed tissue-specific dependencies and a commensurate low Jaccard similarity index in intertissue comparisons. Of these novel miRNAs, 1,657 (45%) were identified in 43 datasets that were generated by cross-linking followed by Argonaute immunoprecipitation and sequencing (Ago CLIP-seq) and represented 3 of the 13 tissues, indicating that these miRNAs are active in the RNA interference pathway. Moreover, experimental investigation through stem-loop PCR of a random collection of newly discovered miRNAs in 12 cell lines representing 5 tissues confirmed their presence and tissue dependence. Among the newly identified miRNAs are many novel miRNA clusters, new members of known miRNA clusters, previously unreported products from uncharacterized arms of miRNA precursors, and previously unrecognized paralogues of functionally important miRNA families (e.g., miR-15/107). Examination of the sequence conservation across vertebrate and invertebrate organisms showed 56.7% of the newly discovered miRNAs to be human-specific whereas the majority (94.4%) are primate lineage-specific. Our findings suggest that the repertoire of human miRNAs is far more extensive than currently represented by public repositories and that there is a significant number of lineage- and/or tissue-specific miRNAs that are uncharacterized.


Subject(s)
MicroRNAs/genetics , Primates/genetics , Animals , Base Sequence , Gene Knockdown Techniques , Genome , Ribonuclease III/genetics , Sequence Alignment
20.
PLoS One ; 8(9): e73009, 2013.
Article in English | MEDLINE | ID: mdl-24039846

ABSTRACT

OBJECTIVE: MiR-21 is an oncomir expressed by malignant cells and/or tumor microenvironment components. In this study we focused on understanding the effects of stromal miR-21 on esophageal malignant cells. DESIGN: MiR-21 expression was evaluated in formalin-fixed paraffin-embedded samples from patients with esophageal squamous-cell carcinoma (SCC) by quantitative RT-PCR. MiR-21 tissue distribution was visualized with in situ hybridization. A co-culture system of normal fibroblasts and esophageal cancer cells was used to determine the effects of fibroblasts on miR-21 expression levels, and on SCC cell migration and invasion. RESULTS: MiR-21 was overexpressed in SCCs, when compared to the adjacent non-tumor tissues (P = 0.0007), and was mainly localized in the cytoplasm of stromal cells adjacent to malignant cells. Accordingly, miR-21 expression was increased in tumors with high versus low stromal content (P = 0.04). When co-cultured with normal fibroblasts, miR-21 expression was elevated in SCC cells (KYSE-30), while its expression was restricted to fibroblasts when co-cultured with adenocarcinoma cells (OE-33 and FLO-1). MiR-21 was detected in conditioned media of cancer cell lines, illustrating the release of this miRNA into the environment. Co-culturing with normal fibroblasts or addition of fibroblast conditioned media caused a significant increase in cell migration and invasion potency of KYSE-30 cells (P<0.0001). In addition, co-culturing cancer cells with fibroblasts and expression of miR-21 induced the expression of the cancer associated fibroblast (CAF) marker S100A4. CONCLUSIONS: MiR-21 expression is mostly confined to the SCC stroma and its release from fibroblasts influences the migration and invasion capacity of SCC cells. Moreover, miR-21 may be an important factor in "activating" fibroblasts to CAFs. These findings provide new insights into the role of CAFs and the extracellular matrix in tumor microenvironment formation and in tumor cell maintenance, and suggest miR-21 may contribute to cellular crosstalk in the tumor microenvironment.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement/drug effects , Coculture Techniques , Collagen Type IV/genetics , Collagen Type IV/metabolism , Culture Media, Conditioned/pharmacology , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Immunohistochemistry , Neoplasm Grading , Organ Specificity/genetics , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...