Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Physiol B ; 188(4): 671-681, 2018 07.
Article in English | MEDLINE | ID: mdl-29619510

ABSTRACT

Variation in rates of water loss has been proposed to be an important mechanism in the survival of terrestrial organisms, as high rates of water loss in desiccating environments may lead to hydric stress and death. Vapor density deficit, the driving force for evaporative water loss, increases exponentially as temperature increases. Acute temperature changes may be the result of daily behavioral thermoregulation of ectotherms, which may influence the among individual variation rates of water loss. The goals of this study were to determine (1) how rates of cutaneous water loss (CWL) and skin resistance (Rs) are affected by acute temperature acclimation, (2) how rates of CWL and Rs vary throughout the day allowing behavioral thermoregulation and (3) the repeatability of CWL and Rs within and among sampling periods. We measured CWL and calculated skin resistance (Rs) of 30 male Sceloporus consobrinus lizards across three summers. We measured CWL on the dorsal and ventral surface of each lizard at 23 °C followed by measurements at 35 °C, and three separate times throughout the day. We found a significant increase in Rs and decrease in CWL at increased acclimation temperatures (35 °C), a significant difference in CWL and Rs throughout the day allowing behavioral thermoregulation, and support for the repeatability of CWL and Rs. Our results demonstrate variability in CWL and Rs in relation to temperature acclimation and thermoregulation, but mixed evidence for repeatability across treatments. Our results suggest other factors, such as peripheral blood flow, may be influencing the inter-individual variation in CWL and Rs.


Subject(s)
Lizards/metabolism , Skin/metabolism , Water Loss, Insensible , Acclimatization/physiology , Animals , Male , Temperature
2.
Physiol Biochem Zool ; 85(5): 526-32, 2012.
Article in English | MEDLINE | ID: mdl-22902381

ABSTRACT

Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.


Subject(s)
Ecosystem , Mammals/physiology , Phylogeny , Water Loss, Insensible , Animals , Body Water/metabolism , Body Weight , Mammals/classification , Species Specificity
3.
Physiol Biochem Zool ; 81(5): 605-11, 2008.
Article in English | MEDLINE | ID: mdl-18729765

ABSTRACT

Small mammals that are active all year must develop ways to survive the cold winters. Endotherms that experience prolonged cold exposure often increase their thermogenic capacity. Thermogenic capacity incorporates basal metabolic rate (BMR), nonshivering thermogenesis (NST), and shivering thermogenesis (ST). Increasing the capacity of any of these components will result in increased thermogenic capacity. It is often thought that NST should be the most plastic component of thermogenic capacity and as such is the most likely to increase with cold acclimation. We used deer mice to test this hypothesis by acclimating 27 animals to one of two temperatures (5 degrees or 22 degrees C) for 8 wk. We then measured and compared values for thermogenic capacity--BMR, ST, and NST--between the two groups. Thermogenic capacity and NST increased by 21% and 42%, respectively, after cold acclimation. Neither BMR nor ST showed any change after acclimation. Therefore, it appears that deer mice raise their thermogenic capacity in response to prolonged cold by altering NST only.


Subject(s)
Acclimatization/physiology , Peromyscus/physiology , Shivering/physiology , Thermogenesis/physiology , Analysis of Variance , Animals , Basal Metabolism , Models, Biological , Oxygen Consumption/physiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...