Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 5(10): 4233-8, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23627320

ABSTRACT

The photoluminescence (PL) of size-purified silicon nanocrystals is measured as a function of temperature and nanoparticle size for pure nanocrystal films and polydimethylsiloxane (PDMS) nanocomposites. The temperature dependence of the bandgap is the same for both sample types, being measurably different from that of bulk silicon because of quantum confinement. Our results also suggest weaker interparticle and environmental coupling in the nanocomposites, with enhanced PL and an unexpected dependence of lifetime on size for the pure nanocrystal films at low temperatures. We interpret these results through differences in the low-temperature size dependence of the ensemble nonradiative equilibrium constants. The response of the PDMS nanocomposites provides a consistent measure of local temperature through intensity, lifetime, and wavelength in a polymer-dispersed morphology suitable for biomedical applications, and we exploit this to fabricate a small-footprint fiber-optic cryothermometer. A comparison of the two sample types offers fundamental insight into the photoluminescent behavior of silicon nanocrystal ensembles.

2.
ACS Nano ; 6(8): 7389-96, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22809465

ABSTRACT

We report on the quantum yield, photoluminescence (PL) lifetime, and ensemble photoluminescent stability of highly monodisperse plasma-synthesized silicon nanocrystals (SiNCs) prepared though density-gradient ultracentrifugation in mixed organic solvents. Improved size uniformity leads to a reduction in PL line width and the emergence of entropic order in dry nanocrystal films. We find excellent agreement with the anticipated trends of quantum confinement in nanocrystalline silicon, with a solution quantum yield that is independent of nanocrystal size for the larger fractions but decreases dramatically with size for the smaller fractions. We also find a significant PL enhancement in films assembled from the fractions, and we use a combination of measurement, simulation, and modeling to link this "brightening" to a temporally enhanced quantum yield arising from SiNC interactions in ordered ensembles of monodisperse nanocrystals. Using an appropriate excitation scheme, we exploit this enhancement to achieve photostable emission.


Subject(s)
Crystallization/methods , Luminescent Measurements , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon/chemistry , Light , Materials Testing , Particle Size , Quantum Theory , Scattering, Radiation , Silicon/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...