Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6752, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37903769

ABSTRACT

In metallurgy, mechanical deformation is essential to engineer the microstructure of metals and to tailor their mechanical properties. However, this practice is inapplicable to near-net-shape metal parts produced by additive manufacturing (AM), since it would irremediably compromise their carefully designed geometries. In this work, we show how to circumvent this limitation by controlling the dislocation density and thermal stability of a steel alloy produced by laser powder bed fusion (LPBF) technology. We show that by manipulating the alloy's solidification structure, we can 'program' recrystallization upon heat treatment without using mechanical deformation. When employed site-specifically, our strategy enables designing and creating complex microstructure architectures that combine recrystallized and non-recrystallized regions with different microstructural features and properties. We show how this heterogeneity may be conducive to materials with superior performance compared to those with monolithic microstructure. Our work inspires the design of high-performance metal parts with artificially engineered microstructures by AM.

2.
Nat Commun ; 12(1): 962, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33574246

ABSTRACT

The introduction of a well-controlled population of coherent twin boundaries (CTBs) is an attractive route to improve the strength ductility product in face centered cubic (FCC) metals. However, the elementary mechanisms controlling the interaction between single arm dislocation sources (SASs), often present in nanotwinned FCC metals, and CTB are still not well understood. Here, quantitative in-situ transmission electron microscopy (TEM) observations of these mechanisms under tensile loading are performed on submicron Ni bi-crystal. We report that the absorption of curved screw dislocations at the CTB leads to the formation of constriction nodes connecting pairs of twinning dislocations at the CTB plane in agreement with large scale 3D atomistic simulations. The coordinated motion of the twinning dislocation pairs due to the presence of the nodes leads to a unique CTB sliding mechanism, which plays an important role in initiating the fracture process at a CTB ledge. TEM observations of the interactions between non-screw dislocations and the CTB highlight the importance of the synergy between the repulsive force of the CTB and the back stress from SASs when the interactions occur in small volumes.

3.
Materials (Basel) ; 13(7)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272638

ABSTRACT

The effect of electron-beam melting (EBM) and selective laser melting (SLM) processes on the chemical composition, phase composition, density, microstructure, and microhardness of as-built Ti55511 blocks were evaluated and compared. The work also aimed to understand how each process setting affects the powder characteristics after processing. Experiments have shown that both methods can process Ti55511 successfully and can build parts with almost full density (>99%) without any internal cracks or delamination. It was observed that the SLM build sample can retain the phase composition of the initial powder, while EBM displayed significant phase changes. After the EBM process, a considerable amount of α Ti-phase and lamella-like microstructures were found in the EBM build sample and corresponding powder left in the build chamber. Both processes showed a similar effect on the variation of powder morphology after the process. Despite the apparent difference in alloying composition, the EBM build Ti55511 sample showed similar microhardness as EBM build Ti-6Al-4V. Measured microhardness of the EBM build sample is approximately 10% higher than the SLM build, and it measured as 348 ± 30.20 HV.

4.
Materials (Basel) ; 13(6)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32209974

ABSTRACT

The transformation induced plasticity (TRIP) effect is investigated during a load path change using a cruciform sample. The transformation properties are followed by in-situ neutron diffraction derived from the central area of the cruciform sample. Additionally, the spatial distribution of the TRIP effect triggered by stress concentrations is visualized using neutron Bragg edge imaging including, e.g., weak positions of the cruciform geometry. The results demonstrate that neutron diffraction contrast imaging offers the possibility to capture the TRIP effect in objects with complex geometries under complex stress states.

5.
Sci Rep ; 3: 2547, 2013.
Article in English | MEDLINE | ID: mdl-23989456

ABSTRACT

While propagation of dislocations in body centered cubic metals at low temperature is understood in terms of elementary steps on {110} planes, slip traces correspond often with other crystallographic or non-crystallographic planes. In the past, characterization of slip was limited to post-mortem electron microscopy and slip trace analysis on the sample surface. Here with in-situ Laue diffraction experiments during micro-compression we demonstrate that when two {110} planes containing the same slip direction experience the same resolved shear stress, sharp slip traces are observed on a {112} plane. When however the {110} planes are slightly differently stressed, macroscopic strain is measured on the individual planes and collective cross-slip is used to fulfill mechanical boundary conditions, resulting in a zig-zag or broad slip trace on the sample surface. We anticipate that such dynamics can occur in polycrystalline metals due to local inhomogeneous stress distributions and can cause unusual slip transfer among grains.


Subject(s)
Nanoparticles/chemistry , Nanoparticles/ultrastructure , Tungsten/chemistry , Compressive Strength , Friction , Hardness , Materials Testing , Molecular Conformation , Stress, Mechanical , Viscosity
6.
Nano Lett ; 9(3): 1158-63, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19193021

ABSTRACT

The evolution of the grain structure, internal strain, and the lattice misorientations of nanoporous gold during dealloying of bulk (3D) Ag-Au alloy samples was studied by various in situ and ex situ X-ray diffraction techniques including powder and Laue diffraction. The experiments reveal that the dealloying process preserves the original crystallographic structure but leads to a small spread in orientations within individual grains. Initially, most grains develop in-plane tensile stresses, which are partly released during further dealloying. Simultaneously, the feature size of the developing nanoporous structure increases with increasing dealloying time. Finally, microdiffraction experiments on dealloyed micron-sized nanoporous pillars reveal significant surface damage introduced by focused ion beam milling.

7.
Phys Rev Lett ; 99(14): 145505, 2007 Oct 05.
Article in English | MEDLINE | ID: mdl-17930686

ABSTRACT

We demonstrate real-time resolved white beam Laue diffraction during compression of micron-sized focused ion beam milled single crystals Au pillars, revealing the dynamical correlation between microstructure and plasticity. The evolution of the Laue patterns of the Au pillars demonstrates the occurrence of crystal rotation and strengthening is explained by plasticity starting on a slip system that is geometrically not predicted but selected because of the character of the preexisting strain gradient.

8.
Nat Mater ; 5(11): 841, author reply 841, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17077840
9.
Science ; 309(5742): 1838-41, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16166512

ABSTRACT

Molecular dynamics simulations of nanocrystalline copper under shock loading show an unexpected ultrahigh strength behind the shock front, with values up to twice those at low pressure. Partial and perfect dislocations, twinning, and debris from dislocation interactions are found behind the shock front. Results are interpreted in terms of the pressure dependence of both deformation mechanisms active at these grain sizes, namely dislocation-based plasticity and grain boundary sliding. These simulations, together with new shock experiments on nanocrystalline nickel, raise the possibility of achieving ultrahard materials during and after shock loading.

10.
Science ; 304(5668): 273-6, 2004 Apr 09.
Article in English | MEDLINE | ID: mdl-15073373

ABSTRACT

Plastic deformation in coarse-grained metals is governed by dislocation-mediated processes. These processes lead to the accumulation of a residual dislocation network, producing inhomogeneous strain and an irreversible broadening of the Bragg peaks in x-ray diffraction. We show that during plastic deformation of electrodeposited nanocrystalline nickel, the peak broadening is reversible upon unloading; hence, the deformation process does not build up a residual dislocation network. The results were obtained during in situ peak profile analysis using the Swiss Light Source. This in situ technique, based on well-known peak profile analysis methods, can be used to address the relationship between microstructure and mechanical properties in nanostructured materials.

11.
Science ; 296(5565): 66-7, 2002 Apr 05.
Article in English | MEDLINE | ID: mdl-11935012
SELECTION OF CITATIONS
SEARCH DETAIL
...