Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
iScience ; 26(10): 107719, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37674984

ABSTRACT

Little is known about the effects of high-fat diet (HFD)-induced obesity on resident colonic lamina propria (LP) macrophages (LPMs) function and metabolism. Here, we report that obesity and diabetes resulted in increased macrophage infiltration in the colon. These macrophages exhibited the residency phenotype CX3CR1hiMHCIIhi and were CD4-TIM4-. During HFD, resident colonic LPM exhibited a lipid metabolism gene expression signature that overlapped that used to define lipid-associated macrophages (LAMs). Via single-cell RNA sequencing, we identified a sub-cluster of macrophages, increased in HFD, that were responsible for the LAM signature. Compared to other macrophages in the colon, these cells were characterized by elevated glycolysis, phagocytosis, and efferocytosis signatures. CX3CR1hiMHCIIhi colonic resident LPMs had fewer lipid droplets (LDs) and decreased triacylglycerol (TG) content compared to equivalent cells in lean mice and exhibited increased phagocytic capacity, suggesting that HFD induces adaptive responses in LPMs to limit bacterial translocation.

2.
Cell Metab ; 34(5): 747-760.e6, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35508110

ABSTRACT

Adipose tissue (AT) plays a central role in systemic metabolic homeostasis, but its function during bacterial infection remains unclear. Following subcutaneous bacterial infection, adipocytes surrounding draining lymph nodes initiated a transcriptional response indicative of stimulation with IFN-γ and a shift away from lipid metabolism toward an immunologic function. Natural killer (NK) and invariant NK T (iNKT) cells were identified as sources of infection-induced IFN-γ in perinodal AT (PAT). IFN-γ induced Nos2 expression in adipocytes through a process dependent on nuclear-binding oligomerization domain 1 (NOD1) sensing of live intracellular bacteria. iNOS expression was coupled to metabolic rewiring, inducing increased diversion of extracellular L-arginine through the arginosuccinate shunt and urea cycle to produce nitric oxide (NO), directly mediating bacterial clearance. In vivo, control of infection in adipocytes was dependent on adipocyte-intrinsic sensing of IFN-γ and expression of iNOS. Thus, adipocytes are licensed by innate lymphocytes to acquire anti-bacterial functions during infection.


Subject(s)
Cues , Killer Cells, Natural , Adipocytes/metabolism , Immunity , Interferon-gamma/metabolism
3.
Nat Commun ; 11(1): 4107, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32796836

ABSTRACT

Foamy macrophages, which have prominent lipid droplets (LDs), are found in a variety of disease states. Toll-like receptor agonists drive triacylglycerol (TG)-rich LD development in macrophages. Here we explore the basis and significance of this process. Our findings indicate that LD development is the result of metabolic commitment to TG synthesis on a background of decreased fatty acid oxidation. TG synthesis is essential for optimal inflammatory macrophage activation as its inhibition, which prevents LD development, has marked effects on the production of inflammatory mediators, including IL-1ß, IL-6 and PGE2, and on phagocytic capacity. The failure of inflammatory macrophages to make PGE2 when TG-synthesis is inhibited is critical for this phenotype, as addition of exogenous PGE2 is able to reverse the anti-inflammatory effects of TG synthesis inhibition. These findings place LDs in a position of central importance in inflammatory macrophage activation.


Subject(s)
Inflammation/metabolism , Lipidomics/methods , Triglycerides/metabolism , Animals , Cells, Cultured , Flow Cytometry , Glucose/metabolism , Glycerol/metabolism , HEK293 Cells , Humans , Lipid Metabolism/physiology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Electron , Palmitates/metabolism , Sequence Analysis, RNA
4.
Immunol Rev ; 295(1): 54-67, 2020 05.
Article in English | MEDLINE | ID: mdl-32242952

ABSTRACT

We have only recently started to appreciate the extent to which immune cell activation involves significant changes in cellular metabolism. We are now beginning to understand how commitment to specific metabolic pathways influences aspects of cellular biology that are the more usual focus of immunological studies, such as activation-induced changes in gene transcription, post-transcriptional regulation of transcription, post-translational modifications of proteins, cytokine secretion, etc. Here, we focus on metabolic reprogramming in mononuclear phagocytes downstream of stimulation with inflammatory signals (such as LPS and IFNγ) vs alternative activation signals (IL-4), with an emphasis on work on dendritic cells and macrophages from our laboratory, and related studies from others. We cover aspects of glycolysis and its branching pathways (glycogen synthesis, pentose phosphate, serine synthesis, hexose synthesis, and glycerol 3 phosphate shuttle), the tricarboxylic acid pathway, fatty acid synthesis and oxidation, and mitochondrial biology. Although our understanding of the metabolism of mononuclear phagocytes has progressed significantly over the last 10 years, major challenges remain, including understanding the effects of tissue residence on metabolic programming related to cellular activation, and the translatability of findings from mouse to human biology.


Subject(s)
Mononuclear Phagocyte System/immunology , Mononuclear Phagocyte System/metabolism , Phagocytes/immunology , Phagocytes/metabolism , Animals , Energy Metabolism , Humans , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mononuclear Phagocyte System/cytology , Phagocytes/cytology
5.
Cell Rep ; 27(7): 2063-2074.e5, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31091446

ABSTRACT

Competition for nutrients like glucose can metabolically restrict T cells and contribute to their hyporesponsiveness during cancer. Metabolic adaptation to the surrounding microenvironment is therefore key for maintaining appropriate cell function. For instance, cancer cells use acetate as a substrate alternative to glucose to fuel metabolism and growth. Here, we show that acetate rescues effector function in glucose-restricted CD8+ T cells. Mechanistically, acetate promotes histone acetylation and chromatin accessibility and enhances IFN-γ gene transcription and cytokine production in an acetyl-CoA synthetase (ACSS)-dependent manner. Ex vivo acetate treatment increases IFN-γ production by exhausted T cells, whereas reducing ACSS expression in T cells impairs IFN-γ production by tumor-infiltrating lymphocytes and tumor clearance. Thus, hyporesponsive T cells can be epigenetically remodeled and reactivated by acetate, suggesting that pathways regulating the use of substrates alternative to glucose could be therapeutically targeted to promote T cell function during cancer.


Subject(s)
Acetate-CoA Ligase/immunology , Acetates/immunology , CD8-Positive T-Lymphocytes/immunology , Glucose/immunology , Interferon-gamma/immunology , Neoplasm Proteins/immunology , Neoplasms, Experimental/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Humans , Mice , Neoplasms, Experimental/pathology
6.
Immunity ; 49(6): 1021-1033.e6, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30566880

ABSTRACT

Metabolic engagement is intrinsic to immune cell function. Prostaglandin E2 (PGE2) has been shown to modulate macrophage activation, yet how PGE2 might affect metabolism is unclear. Here, we show that PGE2 caused mitochondrial membrane potential (Δψm) to dissipate in interleukin-4-activated (M(IL-4)) macrophages. Effects on Δψm were a consequence of PGE2-initiated transcriptional regulation of genes, particularly Got1, in the malate-aspartate shuttle (MAS). Reduced Δψm caused alterations in the expression of 126 voltage-regulated genes (VRGs), including those encoding resistin-like molecule α (RELMα), a key marker of M(IL-4) cells, and genes that regulate the cell cycle. The transcription factor ETS variant 1 (ETV1) played a role in the regulation of 38% of the VRGs. These results reveal ETV1 as a Δψm-sensitive transcription factor and Δψm as a mediator of mitochondrial-directed nuclear gene expression.


Subject(s)
Cell Nucleus/drug effects , Dinoprostone/pharmacology , Gene Expression Regulation/drug effects , Macrophages/drug effects , Membrane Potential, Mitochondrial/physiology , Animals , Cell Nucleus/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Profiling , HEK293 Cells , Humans , Interleukin-4/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophages/metabolism , Macrophages/ultrastructure , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL