Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 305(1): 222-233, 2022 01.
Article in English | MEDLINE | ID: mdl-34357697

ABSTRACT

Post-mortem T2 weighted images of canine heads were acquired at 1.5T, 3T, and 7T. This study aimed to (1) identify anatomical structures of the canine brain using an ultra-high-field magnetic resonance imaging (MRI) (7T) to help to facilitate their localization on high field MRI images (3T and 1.5T), where these structures may appear less well defined and delineated and (2) evaluate the visibility of canine brain anatomical structures on 1.5T, 3T, and 7T MRI images for optimizing clinical utility. Our hypothesis was that the provided subjective image quality comparison at different field strengths may offer a general baseline for canine brain anatomy and may help clinicians evaluate MRI options better. Six canine heads were examined with 1.5T, 3T, and 7T MRI scanners. T2-weighted images were acquired in three orthogonal planes at each field strength using a turbo spin-echo sequence. Fifty neuroanatomic structures were identified and evaluated on the 7T MR images; subsequently, those were found on the 3T and 45 out of the 50 structures were detected on the 1.5T imaging. The structures that were not able to be identified on the 1.5T imaging included the septum pellucidum, oculomotor nucleus, substantia nigra, claustrum, and thalamic nucleus griseus. Images acquired at 7T were subjective of higher spatial and contrast resolution. However, the ultra-high-field images were prone to artifacts at the interface between tissues of different magnetic properties. In conclusion, 3T MR imaging appears to be the best comprise for evaluating canine brain anatomy on MRI with fewer imaging artifacts.


Subject(s)
Brain , Magnetic Resonance Imaging , Animals , Autopsy , Brain/diagnostic imaging , Dogs , Neuroanatomy , Substantia Nigra
2.
J Craniomaxillofac Surg ; 49(4): 256-268, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33622558

ABSTRACT

A novel total temporomandibular joint replacement (TMJR) was developed with CADskills BV (Ghent, Belgium), aiming to achieve reinsertion of the (LPM) onto a scaffold in the implant. In order to investigate the possibility of reinsertion of the LPM, an animal experiment was conducted. An in vivo sheep experiment was conducted, which involved implanting sheep with a TMJR. Clinical parameters were recorded regularly and computed tomography (CT) scan images of two randomly selected sheep per scan were made at 1, 3, and 6 months. After 9.5 months, the sheep were euthanized, and CT scans of all animals were performed in order to evaluate the LPM's enthesis. A total of 13 sheep were implanted with a TMJR. One sheep was used as a sham. Radiographs revealed four outcome types of enthesis reconstruction. In four sheep, there was no reconstruction between the implant and the LPM. In three sheep, there was a purely soft tissue connection of 0.5-0.9 mm (average 0.7 mm) between the ostectomized bony LPM insertion and the implant's lattice structure. A combination of partial bony and partial soft tissue enthesis attachment (0.3-0.5 mm, average 0.4 mm) was found in three sheep. A bony ingrowth of the enthesis into the scaffold occurred in two sheep. A secondary bony connection between the mandible and the insertion of the LPM was found in 10 of 13 sheep. Four fossa components were found to be displaced, yet TMJ function remained in these ewes. The heterotopic ossification that was seen may be a confounding factor in these results. This in vivo experiment showed promising results for improving the current approach to TMJR with the possibility of restoring the laterotrusive function. The fossa displacement was considered to be due to insufficient fixation and predominant laterotrusive force not allowing for proper osseointegration. Further optimization of the reattachment technique, scaffold position and surface area should be done, as well as trials in humans to evaluate the effect of proper revalidation.


Subject(s)
Animal Experimentation , Pterygoid Muscles , Animals , Belgium , Female , Mandibular Condyle/diagnostic imaging , Mandibular Condyle/surgery , Sheep , Temporomandibular Joint/diagnostic imaging , Temporomandibular Joint/surgery
3.
Front Vet Sci ; 7: 600, 2020.
Article in English | MEDLINE | ID: mdl-33102552

ABSTRACT

High-power laser therapy is often used as a treatment for human sport injuries but controlled standardized studies on its efficacy are lacking. The technique has also been introduced in the equine field and recently promising results were reported in a retrospective study focusing on 150 sporthorses suffering from tendinopathy and desmopathy of the SDFT, DDFT, suspensory ligament, and suspensory branches. The goal of the present study was to evaluate the effect of high-power laser in a standardized lesion model in horses. Lesions were created in all lateral suspensory branches of 12 warmblood horses. In each horse, 2 of the 4 lesioned branches were treated daily with a multi-frequency high-power laser for 4 weeks. Color Doppler ultrasonography was performed during and after the treatment period. Six horses were euthanized 4 weeks post-surgery (short-term) and 6 were further rehabilitated until 6 months and then euthanized (long-term). High-field MRI evaluation was performed on all cadaver limbs. On ultrasound, transverse size of the lesion was significantly smaller after 2- and 3 months (p = 0.026 and p = 0.015) in the treated branches. The expected post-surgery enlargement of the lesion circumference and cross-sectional area (CSA) over time, was significantly lower in the short-term laser treated group (p = 0.016 and p = 0.010). Treated lesions showed a significantly increased Doppler signal during treatment (p < 0.001) compared with control. On MRI, in the short and long-term group, the CSA of the lesions was significantly smaller (p = 0.002), and the mean signal significantly lower in the treatment groups (p = 0.006). This standardized controlled study shows that multi-frequency high-power laser therapy significantly improves healing of a suspensory branch ligament lesion.

4.
Front Neuroanat ; 14: 54, 2020.
Article in English | MEDLINE | ID: mdl-32973464

ABSTRACT

The first anatomical atlas of diffusion tensor imaging (DTI) of white matter pathways in the canine brain was published in 2013; however, the anatomical orientation of the entire visual pathway in the canine brain, from the retina to the cortex, has not yet been studied using DTI. In the present study, 3T DTI magnetic resonance (MR) images of three dogs euthanized for reasons other than neurological disorders were obtained. The process of obtaining combined fractional anisotropy and directional maps was initiated within 1 h of death. The heads were amputated immediately after MR imaging and stored in 10% formalin until dissection and histological sampling was performed. The trajectory of the visual pathway is dissimilar to the horizontal representation in other literature. To our knowledge, ours is the first study to visualize the entire canine visual pathway in its full antero-posterior extension. Fibers from the retina to the cortex passed through the optic nerve, optic chiasm, optic tracts, lateral geniculate nucleus, Meyer's and Baum's loops, and pretectal fibers. Their projections to the cortex were similar to those in the human visual pathway. The crossing of fibers at the optic chiasm occurred in 75% of fibers. In addition to advancing our knowledge in this field of study, these results could help plan neurosurgical and radiotherapeutic procedures to avoid unnecessary damage to the visual fiber system.

5.
Anat Rec (Hoboken) ; 300(7): 1270-1289, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28214332

ABSTRACT

Recently, we published a first anatomical diffusion tensor imaging (DTI) atlas regarding white matter tracts in the canine brain. The purpose of this study was to show the significance of DTI in the revelation of the white matter fibres in the feline brain (i.e., to obtain an anatomical DTI atlas of images) and to descriptively compare these to previously obtained white matter fibre images of the canine brain. DTI MR Images of four cats euthanized for reasons other than neurological disorders were obtained with a 3 T system. Combined fractional anisotropic (FA) and directional maps were obtained within the hour after death. An experienced anatomist tracked white matter tracts of clinical relevance using the scanner software. After validation of these tracts, we compared relevant neurological connections between the cat and the dog. Comparison of cerebral structures between different species is easier when the three dimensional anatomy is visualized by using DTI. 3D rendered DTI images clearly show major differences in neurological architecture between cats and dogs for example, the more important space occupying role of the limbic system, and the less diffuse, less nodular, less pronounced and thinner fibre bundles in the feline brain compared to the canine brain (except for the cerebellum different parts connecting fibres passing through the brainstem which are pronouncedly developed). Anat Rec, 300:1270-1289, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain/anatomy & histology , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , White Matter/anatomy & histology , Animals , Cats , Dogs , Female , Male
6.
Anat Rec (Hoboken) ; 296(2): 340-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23355519

ABSTRACT

Diffusion weighted imaging sequences are now widely available on Magnetic Resonance Imaging (MRI) scanners. Diffusion Tensor Imaging (DTI) of the brain is able to show white matter tracts and is now commonly used in human medicine to study brain anatomy, tumors, structural pathways,… The purpose of this study was to show the interest of DTI to reveal the white matter fibers in the dogs' brain. DTI MR Images for this study were obtained with a 3 T system of 4 dogs euthanized for other reasons than neurological disorders. Combined fractional anisotropic (FA) and directional maps were obtained in the first 2 hours after death. The heads were amputated immediately after scanning and stored in 10% formalin until preparation for dissection. An experienced anatomist tracked white matter tracts with clinical relevance using the scanner software. The selected tracts were REFVIDume rendered and correlated with gross dissection. Using DTI we were able to track relevant neurological connections, such as the corticospinal tract, the optic and the cerebellar tract. The three dimensional anatomy is better presented using modern visualization techniques. DTI seems to be a valuable tool in order to present clinically relevant white matter tracts to neurological clinicians and researchers.


Subject(s)
Brain/anatomy & histology , Diffusion Tensor Imaging , Nerve Fibers , Animals , Dissection , Dogs , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Male , Neural Pathways/anatomy & histology
7.
J Vet Dent ; 29(1): 27-34, 2012.
Article in English | MEDLINE | ID: mdl-22792858

ABSTRACT

The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal reconstructions were created using specialized software. Image quality and visibility of anatomical landmarks were subjectively assessed by two observers. Good image quality was obtained for the MPR para-sagittal reconstructions through multiple teeth. The image quality of the panoramic reconstructions of dogs was moderate while the panoramic reconstructions of cats were poor since the images were associated with an increased noise level. Segmental panoramic reconstructions of the mouth seem to be useful for studying the dental anatomy especially in dogs. The results of this study using human dental CBCT technology demonstrate the potential of this scanning technology in veterinary medicine. Unfortunately, the moderate image quality obtained with the CBCT technique reported here seems to be inferior to the diagnostic image quality obtained from 2-dimensional dental radiographs. Further research is required to optimize scanning and reconstruction protocols for veterinary applications.


Subject(s)
Cone-Beam Computed Tomography/veterinary , Radiography, Dental/veterinary , Animals , Cats , Dogs , Feasibility Studies , Image Processing, Computer-Assisted , Radiography, Dental/methods , Radiography, Panoramic/veterinary , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...