Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(12): 3369-3375, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38498927

ABSTRACT

Polyacetylene, a versatile material with an electrical conductivity that can span 7 orders of magnitude, is the prototypical conductive polymer. In this letter, we report the observation of a significant Overhauser effect at the high magnetic field of 14.1 T that operates at 100 K and room temperature in both linear and cyclic polyacetylene. Significant NMR signal enhancements ranging from 24 to 45 are obtained. The increased sensitivity enabled the characterization of the polymer chain defects at natural abundance. The absence of end methyl group carbon-13 signals provides proof of the closed-loop molecular structure of cyclic polyacetylene. The remarkable efficiency of the soliton based Overhauser effect DNP mechanism at high temperature and high field holds promise for applications and extension to other conductive polymer systems.

2.
J Chem Phys ; 154(15): 154201, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33887944

ABSTRACT

Dimethylammonium magnesium formate, [(CH3)2NH2][Mg(HCOO)3] or DMAMgF, is a model used to study high temperature hybrid perovskite-like dielectrics. This compound displays an order-disorder phase transition at about 260 K. Using multifrequency electron spin resonance in continuous wave and pulsed modes, we herein present the quantum dynamics of the Mn2+ ion probe in DMAMgF. In the high temperature paraelectric phase, we observe a large distribution of the zero field splitting that is attributed to the high local disorder and further supported by density functional theory computations. In the low temperature ferroelastic phase, a single structure phase is detected and shown to contain two magnetic structures. The complex electron paramagnetic resonance signals were identified by means of the Rabi oscillation method combined with the crystal field kernel density estimation.

3.
Heliyon ; 5(10): e02603, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31660446

ABSTRACT

Leachate migration from open landfills is an environmental concern of developing cities. This study investigated the base soil-profile pedo-physical and chemical properties of the South African Sepane soil form or referred to as Cutanic Luvisol at the Bloemfontein southern landfill under the Mangaung municipality in the Free State Province. Six soil-profiles pedo-physical, exchangeable-cations and heavy metals concentrations were characterized from in-situ, core and loose soil-samples. The DTPA Test from a 5g air-dried soil extracted heavy metals. The soil profile was characterized by a layered Orthic-A, pedocutanic B- and C-horizons with lower horizons containing mean-total clay of 72%, bulk-density (≥1.5 gcm-3) and saturated hydraulic-conductivity (Ks < 6mmhr-1). Mean soil pH increased with depth from 6.4 to 6.8 along-side exchangeable-cations ranging from 19 to 2573 mgkg-1 in the order Ca > Mg > K > Na > S > P and Ca > Mg > Na > K > S > P for the respective A- and B-horizons. The Mg/K and (Ca + Mg)/K exceeded norm ratios. Soil-profile horizons had respective 44%, 34% and 22% heavy-metal distribution with mean content range of 0.001-37.3 mgkg-1 in the order Mn > Fe > Cr > Zn > Cu > As > Pb > Ni > Cd and Fe > Mn > Cr > Cu > As > Pb > Zn > Ni > Cd for the surface and subsurface horizons, respectively. Heavy-metal mean concentrations were below the norm except for Cr that was higher than 150% from upper horizons and posed serious risk to the near-surface environment. Soil profiles heavy-metal content and pollution-index was unpolluted (0.3-0.4), decreased with depth and reflected no subsurface pollution concerns. This study findings highlighted low internal-migration potential of clay soils and the need for understanding the sources and mode of migration of Cr at the landfill alongside continued monitoring.

4.
Phys Rev Lett ; 122(5): 057207, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30822013

ABSTRACT

We investigate the low-temperature magnetic properties of the molecule-based chiral spin chain [Cu(pym)(H_{2}O)_{4}]SiF_{6}·H_{2}O (pym=pyrimidine). Electron-spin resonance, magnetometry and heat capacity measurements reveal the presence of staggered g tensors, a rich low-temperature excitation spectrum, a staggered susceptibility, and a spin gap that opens on the application of a magnetic field. These phenomena are reminiscent of those previously observed in nonchiral staggered chains, which are explicable within the sine-Gordon quantum-field theory. In the present case, however, although the sine-Gordon model accounts well for the form of the temperature dependence of the heat capacity, the size of the gap and its measured linear field dependence do not fit with the sine-Gordon theory as it stands. We propose that the differences arise due to additional terms in the Hamiltonian resulting from the chiral structure of [Cu(pym)(H_{2}O)_{4}]SiF_{6}·H_{2}O, particularly a uniform Dzyaloshinskii-Moriya coupling and a fourfold periodic staggered field.

5.
J Phys Chem Lett ; 9(12): 3187-3192, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29756781

ABSTRACT

We investigate a new time domain approach to dynamic nuclear polarization (DNP), the frequency-swept integrated solid effect (FS-ISE), utilizing a high power, broadband 94 GHz (3.35 T) pulse EPR spectrometer. The bandwidth of the spectrometer enabled measurement of the DNP Zeeman frequency/field profile that revealed two dominant polarization mechanisms, the expected ISE, and a recently observed mechanism, the stretched solid effect (S2E). At 94 GHz, despite the limitations in the microwave chirp pulse length (10 µs) and the repetition rate (2 kHz), we obtained signal enhancements up to ∼70 for the S2E and ∼50 for the ISE. The results successfully demonstrate the viability of the FS-ISE and S2E DNP at a frequency 10 times higher than previous studies. Our results also suggest that these approaches are candidates for implementation at higher magnetic fields.

6.
Phys Rev Lett ; 118(1): 017202, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28106444

ABSTRACT

Employing complementary torque magnetometry and electron spin resonance on single crystals of herbertsmithite, the closest realization to date of a quantum kagome antiferromagnet featuring a spin-liquid ground state, we provide novel insight into different contributions to its magnetism. At low temperatures, two distinct types of defects with different magnetic couplings to the kagome spins are found. Surprisingly, their magnetic response contradicts the threefold symmetry of the ideal kagome lattice, suggesting the presence of a global structural distortion that may be related to the establishment of the spin-liquid ground state.

7.
J Phys Condens Matter ; 26(8): 086001, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24501196

ABSTRACT

We report electron spin resonance (ESR), Raman scattering, and interband absorption measurements of the multiferroic FeTe2O5Br with two successive magnetic transitions at T(N1) = 11.0 K and T(N2) = 10.5 K. ESR measurements show all characteristics of a low-dimensional frustrated magnet: (i) the appearance of an antiferromagnetic resonance (AFMR) mode at 40 K, a much higher temperature than T(N1), and (ii) a weaker temperature dependence of the AFMR linewidth than in classical magnets, ΔH(pp)(T) ∝ T(n) with n = 2.2-2.3. Raman spectra at ambient pressure show a large variation of phonon intensities with temperature while there are no appreciable changes in phonon numbers and frequencies. This demonstrates the significant role of the polarizable Te4⁺ lone pairs in inducing multiferroicity. Under pressure at P = 2.12-3.04 GPa Raman spectra undergo drastic changes and absorption spectra exhibit an abrupt drop of a band gap. This evidences a pressure-induced structural transition related to changes of the electronic states at high pressures.


Subject(s)
Electrons , Iron Compounds/chemistry , Magnetic Phenomena , Oxides/chemistry , Tellurium/chemistry , Absorption , Optical Phenomena , Pressure
8.
Phys Rev Lett ; 110(5): 057601, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23414045

ABSTRACT

We demonstrate an all-electrical donor nuclear spin polarization method in silicon by exploiting the tunable interaction of donor bound electrons with a two-dimensional electron gas, and achieve over two orders of magnitude nuclear hyperpolarization at T=5 K and B=12 T with an in-plane magnetic field. We also show an intricate dependence of nuclear polarization effects on the orientation of the magnetic field, and both hyperpolarization and antipolarization can be controllably achieved in the quantum Hall regime. Our results demonstrate that donor nuclear spin qubits can be initialized through local gate control of electrical currents without the need for optical excitation, enabling the implementation of nuclear spin qubit initialization in dense multiqubit arrays.

9.
Nature ; 489(7416): 409-13, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-22996555

ABSTRACT

Electron paramagnetic resonance (EPR) spectroscopy interrogates unpaired electron spins in solids and liquids to reveal local structure and dynamics; for example, EPR has elucidated parts of the structure of protein complexes that other techniques in structural biology have not been able to reveal. EPR can also probe the interplay of light and electricity in organic solar cells and light-emitting diodes, and the origin of decoherence in condensed matter, which is of fundamental importance to the development of quantum information processors. Like nuclear magnetic resonance, EPR spectroscopy becomes more powerful at high magnetic fields and frequencies, and with excitation by coherent pulses rather than continuous waves. However, the difficulty of generating sequences of powerful pulses at frequencies above 100 gigahertz has, until now, confined high-power pulsed EPR to magnetic fields of 3.5 teslas and below. Here we demonstrate that one-kilowatt pulses from a free-electron laser can power a pulsed EPR spectrometer at 240 gigahertz (8.5 teslas), providing transformative enhancements over the alternative, a state-of-the-art ∼30-milliwatt solid-state source. Our spectrometer can rotate spin-1/2 electrons through π/2 in only 6 nanoseconds (compared to 300 nanoseconds with the solid-state source). Fourier-transform EPR on nitrogen impurities in diamond demonstrates excitation and detection of EPR lines separated by about 200 megahertz. We measured decoherence times as short as 63 nanoseconds, in a frozen solution of nitroxide free-radicals at temperatures as high as 190 kelvin. Both free-electron lasers and the quasi-optical technology developed for the spectrometer are scalable to frequencies well in excess of one terahertz, opening the way to high-power pulsed EPR spectroscopy up to the highest static magnetic fields currently available.


Subject(s)
Electron Spin Resonance Spectroscopy/instrumentation , Electron Spin Resonance Spectroscopy/methods , Electrons , Lasers , Allyl Compounds/chemistry , Benzene/chemistry , Cyclic N-Oxides/chemistry , Diamond/chemistry , Fourier Analysis , Free Radicals/chemistry , Nitrogen Oxides/chemistry , Temperature , Time Factors
10.
J Phys Condens Matter ; 24(24): 246001, 2012 Jun 20.
Article in English | MEDLINE | ID: mdl-22627202

ABSTRACT

We report pulse-field magnetization, ac susceptibility, and 100 GHz electron spin resonance (ESR) measurements on the S = 5/2 two-dimensional triangular compound Ba3NbFe3Si2O14 with the Néel temperature T(N) = 26 K. The magnetization curve shows an almost linear increase up to 60 T with no indication of a one-third magnetization plateau. An unusually large frequency dependence of the ac susceptibility in the temperature range of T = 20-100 K reveals a spin-glass behavior or superparamagnetism, signaling the presence of frustration-related slow magnetic fluctuations. The temperature dependence of the ESR linewidth exhibits two distinct critical regimes; (i) ΔH(pp)(T) is proportional to (T-T(N))(-p) with the exponent p = 0.2(1)-0.2(3) for temperatures above 27 K, and (ii) ΔH(pp)(T) is proportional to (T-T*)(-p) with T* = 12 K and p = 0.8(1)-0.8(4) for temperatures between 12 and 27 K. This is interpreted as indicating a dimensional crossover of magnetic interactions and the persistence of short-range correlations with a helically ordered state.


Subject(s)
Magnetic Phenomena , Silicates/chemistry , Electron Spin Resonance Spectroscopy , Temperature
11.
Phys Rev Lett ; 108(6): 067206, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22401119

ABSTRACT

We report on coherent manipulation of electron spins in an antiferromagnetically coupled spin triangle {Cu3-X} (X=As, Sb) impregnated in freestanding nanoporous silicon (NS) by using 240 GHz microwave pulses. Rabi oscillations are observed and the spin coherence time is found to be T(2)=1066 ns at 1.5 K. This demonstrates that the {Cu3-X}:NS hybrid material provides a promising scheme for implementing spin-based quantum gates. By measuring the spin relaxation times of samples with different symmetries and environments we give evidence that a spin chirality is the main decoherence source of spin triangle molecules.

12.
Nano Lett ; 12(3): 1210-7, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22320177

ABSTRACT

Two types of graphene nanoribbons: (a) potassium-split graphene nanoribbons (GNRs), and (b) oxidative unzipped and chemically converted graphene nanoribbons (CCGNRs) were investigated for their magnetic properties using the combination of static magnetization and electron spin resonance measurements. The two types of ribbons possess remarkably different magnetic properties. While a low-temperature ferromagnet-like feature is observed in both types of ribbons, such room-temperature feature persists only in potassium-split ribbons. The GNRs show negative exchange bias, but the CCGNRs exhibit a "positive exchange bias". Electron spin resonance measurements suggest that the carbon-related defects may be responsible for the observed magnetic behavior in both types of ribbons. Furthermore, information on the proton hyperfine coupling strength has been obtained from hyperfine sublevel correlation experiments performed on the GNRs. Electron spin resonance finds no evidence for the presence of potassium (cluster) related signals, pointing to the intrinsic magnetic nature of the ribbons. Our combined experimental results may indicate the coexistence of ferromagnetic clusters with antiferromagnetic regions leading to disordered magnetic phase. We discuss the possible origin of the observed contrast in the magnetic behaviors of the two types of ribbons studied.


Subject(s)
Crystallization/methods , Graphite/chemistry , Magnets , Nanostructures/chemistry , Nanostructures/ultrastructure , Electromagnetic Fields , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Oxidation-Reduction , Particle Size , Surface Properties
13.
Water Sci Technol ; 65(3): 550-7, 2012.
Article in English | MEDLINE | ID: mdl-22258688

ABSTRACT

Macropores play an important role in the rapid transport of water, solutes and pollutants through the soil. Transport through these pores (>0.5 mm) is dominated by gravitational forces (i.e. matrix forces have low impact) resulting in flow rates orders of magnitude higher than rates that would be predicted, posing problems for modelling and understanding water and solute transport through soils. This study aimed to quantify the water conducting macroporosity (WCM) in a range of soils in South Africa and to develop three pedotransfer functions (PTFs) able to predict WCM. Saturated (K(s)) and unsaturated (K30) conductivities were measured in situ on 120 soil profiles using double ring and tension infiltrometers methods. Differences between K(s) and K30 in conjunction with Poiseuille's law and the capillary rise equation were used to calculate WCM. The first two multiple regression functions made use of all available soil properties influencing WCM using a 'best model' and 'backward' analysis approach respectively. The third model used only easily observable soil properties to predict the WCM. The functions were validated using a double-cross method. Results are encouraging with R² values of 0.78, 0.74 and 0.69 for functions 1, 2 and 3 respectively.


Subject(s)
Soil/chemistry , Water/chemistry , Models, Theoretical , South Africa , Water Movements
14.
Nature ; 476(7358): 76-9, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21775988

ABSTRACT

Quantum decoherence is a central concept in physics. Applications such as quantum information processing depend on understanding it; there are even fundamental theories proposed that go beyond quantum mechanics, in which the breakdown of quantum theory would appear as an 'intrinsic' decoherence, mimicking the more familiar environmental decoherence processes. Such applications cannot be optimized, and such theories cannot be tested, until we have a firm handle on ordinary environmental decoherence processes. Here we show that the theory for insulating electronic spin systems can make accurate and testable predictions for environmental decoherence in molecular-based quantum magnets. Experiments on molecular magnets have successfully demonstrated quantum-coherent phenomena but the decoherence processes that ultimately limit such behaviour were not well constrained. For molecular magnets, theory predicts three principal contributions to environmental decoherence: from phonons, from nuclear spins and from intermolecular dipolar interactions. We use high magnetic fields on single crystals of Fe(8) molecular magnets (in which the Fe ions are surrounded by organic ligands) to suppress dipolar and nuclear-spin decoherence. In these high-field experiments, we find that the decoherence time varies strongly as a function of temperature and magnetic field. The theoretical predictions are fully verified experimentally, and there are no other visible decoherence sources. In these high fields, we obtain a maximum decoherence quality-factor of 1.49 × 10(6); our investigation suggests that the environmental decoherence time can be extended up to about 500 microseconds, with a decoherence quality factor of ∼6 × 10(7), by optimizing the temperature, magnetic field and nuclear isotopic concentrations.

15.
Phys Rev Lett ; 107(25): 257203, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22243107

ABSTRACT

We present an electron spin resonance (ESR) investigation of the acentric Ba(3)NbFe(3)Si(2)O(14), featuring a unique single-domain double-chiral magnetic ground state. Combining simulations of the ESR linewidth anisotropy and the antiferromagnetic-resonance modes allows us to single out the Dzyaloshinsky-Moriya (DM) interaction as the leading magnetic anisotropy term. We demonstrate that the rather minute out-of-plane DM component d(c)=45 mK is responsible for selecting a unique ground state, which endures thermal fluctuations up to astonishingly high temperatures.

16.
Science ; 330(6011): 1652-6, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-21164011

ABSTRACT

Electron spins are strong candidates with which to implement spintronics because they are both mobile and able to be manipulated. The relatively short lifetimes of electron spins, however, present a problem for the long-term storage of spin information. We demonstrated an ensemble nuclear spin memory in phosphorous-doped silicon, which can be read out electrically and has a lifetime exceeding 100 seconds. The electronic spin information can be mapped onto and stored in the nuclear spin of the phosphorus donors, and the nuclear spins can then be repetitively read out electrically for time periods that exceed the electron spin lifetime. We discuss how this memory can be used in conjunction with other silicon spintronic devices.

17.
Phys Rev Lett ; 102(2): 027601, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19257318

ABSTRACT

We experimentally demonstrate a method for obtaining nuclear spin hyperpolarization, that is, polarization significantly in excess of that expected at thermal equilibrium. By exploiting a nonequilibrium Overhauser process, driven by white light irradiation, we obtain more than 68% negative nuclear polarization of phosphorus donors in silicon. This polarization is reached with a time constant of approximately 150 sec, at a temperature of 1.37 K and a magnetic field of 8.5 T. The ability to obtain such large polarizations is discussed with regards to its significance for quantum information processing and magnetic resonance imaging.

18.
Phys Rev Lett ; 102(5): 050501, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19257492

ABSTRACT

Large-spin Mn2+ ions (S=5/2) diluted in a nonmagnetic MgO matrix of high crystalline symmetry are used to realize a six-level system that can be operated by means of multiphoton coherent Rabi oscillations. This spin system has a very small anisotropy which can be tuned in situ to reversibly transform the system between harmonic and nonharmonic level configurations. Decoherence effects are strongly suppressed as a result of the quasi-isotropic electron interaction with the crystal field and with the 55Mn nuclear spins. These results suggest new ways of manipulating, reading, and resetting spin quantum states which can be applied to encode a qubit across several quantum levels.

19.
Phys Rev Lett ; 101(20): 207602, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-19113380

ABSTRACT

Pulsed electrically detected magnetic resonance of phosphorous (31P) in bulk crystalline silicon at very high magnetic fields (B0>8.5 T) and low temperatures (T=2.8 K) is presented. We find that the spin-dependent capture and reemission of highly polarized (>95%) conduction electrons by equally highly polarized 31P donor electrons introduces less decoherence than other mechanisms for spin-to-charge conversion. This allows the electrical detection of spin coherence times in excess of 100 mus, 50 times longer than the previous maximum for electrically detected spin readout experiments.

20.
Phys Rev Lett ; 101(2): 026405, 2008 Jul 11.
Article in English | MEDLINE | ID: mdl-18764206

ABSTRACT

We report the determination of the Dzyaloshinsky-Moriya interaction, the dominant magnetic anisotropy term in the kagome spin-1/2 compound ZnCu3(OH)6Cl2. Based on the analysis of the high-temperature electron spin resonance (ESR) spectra, we find its main component |Dz|=15(1) K to be perpendicular to the kagome planes. Through the temperature dependent ESR linewidth, we observe a building up of nearest-neighbor spin-spin correlations below approximately 150 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...