Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
2.
iScience ; 26(1): 105732, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36590162

ABSTRACT

Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene that alters cellular homeostasis, particularly in the striatum and cortex. Astrocyte signaling that establishes and maintains neuronal functions are often altered under pathological conditions. We performed single-nuclei RNA-sequencing on human HD patient-induced pluripotent stem cell (iPSC)-derived astrocytes and on striatal and cortical tissue from R6/2 HD mice to investigate high-resolution HD astrocyte cell state transitions. We observed altered maturation and glutamate signaling in HD human and mouse astrocytes. Human HD astrocytes also showed upregulated actin-mediated signaling, suggesting that some states may be cell-autonomous and human specific. In both species, astrogliogenesis transcription factors may drive HD astrocyte maturation deficits, which are supported by rescued climbing deficits in HD drosophila with NFIA knockdown. Thus, dysregulated HD astrocyte states may induce dysfunctional astrocytic properties, in part due to maturation deficits influenced by astrogliogenesis transcription factor dysregulation.

3.
Hum Mol Genet ; 32(9): 1483-1496, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36547263

ABSTRACT

Astrocytes and brain endothelial cells are components of the neurovascular unit that comprises the blood-brain barrier (BBB) and their dysfunction contributes to pathogenesis in Huntington's disease (HD). Defining the contribution of these cells to disease can inform cell-type-specific effects and uncover new disease-modifying therapeutic targets. These cells express integrin (ITG) adhesion receptors that anchor the cells to the extracellular matrix (ECM) to maintain the integrity of the BBB. We used HD patient-derived induced pluripotent stem cell (iPSC) modeling to study the ECM-ITG interface in astrocytes and brain microvascular endothelial cells and found ECM-ITG dysregulation in human iPSC-derived cells that may contribute to the dysfunction of the BBB in HD. This disruption has functional consequences since reducing ITG expression in glia in an HD Drosophila model suppressed disease-associated CNS dysfunction. Since ITGs can be targeted therapeutically and manipulating ITG signaling prevents neurodegeneration in other diseases, defining the role of ITGs in HD may provide a novel strategy of intervention to slow CNS pathophysiology to treat HD.


Subject(s)
Huntington Disease , Integrins , Humans , Integrins/metabolism , Endothelial Cells/metabolism , Huntington Disease/pathology , Neuroglia/metabolism , Blood-Brain Barrier/metabolism , Extracellular Matrix/metabolism
4.
Elife ; 102021 02 18.
Article in English | MEDLINE | ID: mdl-33599608

ABSTRACT

Across animal species, meals are terminated after ingestion of large food volumes, yet underlying mechanosensory receptors have so far remained elusive. Here, we identify an essential role for Drosophila Piezo in volume-based control of meal size. We discover a rare population of fly neurons that express Piezo, innervate the anterior gut and crop (a food reservoir organ), and respond to tissue distension in a Piezo-dependent manner. Activating Piezo neurons decreases appetite, while Piezo knockout and Piezo neuron silencing cause gut bloating and increase both food consumption and body weight. These studies reveal that disrupting gut distension receptors changes feeding patterns and identify a key role for Drosophila Piezo in internal organ mechanosensation.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Ion Channels/genetics , Mechanotransduction, Cellular/genetics , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Feeding Behavior/physiology , Female , Gastrointestinal Tract/physiology , Ion Channels/metabolism , Male , Sensory Receptor Cells/physiology
5.
RNA Biol ; 18(7): 1014-1024, 2021 07.
Article in English | MEDLINE | ID: mdl-33586621

ABSTRACT

Environmental fitness is an essential component of animal survival. Fitness is achieved through responsive physiological plasticity of tissues across the entire body, and particularly in the nervous system. At the molecular level, neural plasticity is mediated via gene-environmental interactions whereby developmental cues and experience dependent input adapt neuronal function to ever changing demands. To this end, neuronal gene regulation must be coupled to changes in neural activity. Seminal discoveries of the 20th century demonstrated neural activity modifies gene expression through calcium-dependent gene transcription. Building on this model, recent work over the last two decades shows that mRNA products of transcriptional programming continue to be regulated in the neuron through the activity-dependent post-transcriptional action of microRNAs (miRNAs). miRNAs are special post-transcriptional regulators that can tune gene expression within the spatial and temporal requirements of synaptic compartments. This mode of gene regulation has proven to be essential for synaptic function and plasticity as miRNA loss of function is highly associated with neural disease. In this review we will discuss current perspective on the link between presynaptic plasticity and miRNA biogenesis in the neuron.


Subject(s)
MicroRNAs/genetics , Neurodegenerative Diseases/genetics , Neuronal Plasticity/genetics , Neurons/metabolism , RNA, Messenger/genetics , Adaptation, Physiological/genetics , Animals , Calcium/metabolism , Calcium Signaling , Gene Expression Regulation , Gene-Environment Interaction , Genetic Fitness/physiology , Humans , MicroRNAs/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/cytology , RNA, Messenger/metabolism , Stress, Physiological/genetics , Synapses/metabolism , Synaptic Transmission
6.
Neural Dev ; 15(1): 11, 2020 08 02.
Article in English | MEDLINE | ID: mdl-32741370

ABSTRACT

Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/growth & development , Gene Expression Regulation/genetics , Neuromuscular Junction/growth & development , Synapses/physiology , Animals
7.
J Vis Exp ; (159)2020 05 12.
Article in English | MEDLINE | ID: mdl-32478717

ABSTRACT

Microtubules (MTs) play critical roles in neuronal development, but many questions remain about the molecular mechanisms of their regulation and function. Furthermore, despite progress in understanding postsynaptic MTs, much less is known about the contributions of presynaptic MTs to neuronal morphogenesis. In particular, studies of in vivo MT dynamics in Drosophila sensory dendrites yielded significant insights into polymer-level behavior. However, the technical and analytical challenges associated with live imaging of the fly neuromuscular junction (NMJ) have limited comparable studies of presynaptic MT dynamics. Moreover, while there are many highly effective software strategies for automated analysis of MT dynamics in vitro and ex vivo, in vivo data often necessitate significant operator input or entirely manual analysis due to inherently inferior signal-to-noise ratio in images and complex cellular morphology.  To address this, this study optimized a new software platform for automated and unbiased in vivo particle detection. Multiparametric analysis of live time-lapse confocal images of EB1-GFP labeled MTs was performed in both dendrites and the NMJ of Drosophila larvae and found striking differences in MT behaviors. MT dynamics were furthermore analyzed following knockdown of the MT-associated protein (MAP) dTACC, a key regulator of Drosophila synapse development, and identified statistically significant changes in MT dynamics compared to wild type. These results demonstrate that this novel strategy for the automated multiparametric analysis of both pre- and postsynaptic MT dynamics at the polymer-level significantly reduces human-in-the-loop criteria. The study furthermore shows the utility of this method in detecting distinct MT behaviors upon dTACC-knockdown, indicating a possible future application for functional screens of factors that regulate MT dynamics in vivo. Future applications of this method may also focus on elucidating cell type and/or compartment-specific MT behaviors, and multicolor correlative imaging of EB1-GFP with other cellular and subcellular markers of interest.


Subject(s)
Dendrites/metabolism , Drosophila melanogaster/metabolism , Imaging, Three-Dimensional , Microtubules/metabolism , Neuromuscular Junction/metabolism , Single Molecule Imaging , Synapses/metabolism , Animals , Drosophila Proteins/metabolism , Green Fluorescent Proteins/metabolism , Humans , Image Processing, Computer-Assisted , Larva/metabolism , Microtubule-Associated Proteins/metabolism , RNA Interference , Software
8.
Neural Dev ; 15(1): 4, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32183907

ABSTRACT

BACKGROUND: Recent studies of synapse form and function highlight the importance of the actin cytoskeleton in regulating multiple aspects of morphogenesis, neurotransmission, and neural plasticity. The conserved actin-associated protein Enabled (Ena) is known to regulate development of the Drosophila larval neuromuscular junction through a postsynaptic mechanism. However, the functions and regulation of Ena within the presynaptic terminal has not been determined. METHODS: Here, we use a conditional genetic approach to address a presynaptic role for Ena on presynaptic morphology and ultrastructure, and also examine the pathway in which Ena functions through epistasis experiments. RESULTS: We find that Ena is required to promote the morphogenesis of presynaptic boutons and branches, in contrast to its inhibitory role in muscle. Moreover, while postsynaptic Ena is regulated by microRNA-mediated mechanisms, presynaptic Ena relays the output of the highly conserved receptor protein tyrosine phosphatase Dlar and associated proteins including the heparan sulfate proteoglycan Syndecan, and the non-receptor Abelson tyrosine kinase to regulate addition of presynaptic varicosities. Interestingly, Ena also influences active zones, where it restricts active zone size, regulates the recruitment of synaptic vesicles, and controls the amplitude and frequency of spontaneous glutamate release. CONCLUSION: We thus show that Ena, under control of the Dlar pathway, is required for presynaptic terminal morphogenesis and bouton addition and that Ena has active zone and neurotransmission phenotypes. Notably, in contrast to Dlar, Ena appears to integrate multiple pathways that regulate synapse form and function.


Subject(s)
DNA-Binding Proteins/physiology , Drosophila Proteins/metabolism , Epistasis, Genetic/physiology , Morphogenesis/physiology , Receptor-Like Protein Tyrosine Phosphatases/metabolism , Signal Transduction/physiology , Synapses/physiology , Animals , DNA-Binding Proteins/genetics , Drosophila , Epistasis, Genetic/genetics , Presynaptic Terminals/physiology , Presynaptic Terminals/ultrastructure , Signal Transduction/genetics , Synapses/ultrastructure
9.
Nat Commun ; 11(1): 1092, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32107390

ABSTRACT

Micro(mi)RNA-based post-transcriptional regulatory mechanisms have been broadly implicated in the assembly and modulation of synaptic connections required to shape neural circuits, however, relatively few specific miRNAs have been identified that control synapse formation. Using a conditional transgenic toolkit for competitive inhibition of miRNA function in Drosophila, we performed an unbiased screen for novel regulators of synapse morphogenesis at the larval neuromuscular junction (NMJ). From a set of ten new validated regulators of NMJ growth, we discovered that miR-34 mutants display synaptic phenotypes and cell type-specific functions suggesting distinct downstream mechanisms in the presynaptic and postsynaptic compartments. A search for conserved downstream targets for miR-34 identified the junctional receptor CNTNAP4/Neurexin-IV (Nrx-IV) and the membrane cytoskeletal effector Adducin/Hu-li tai shao (Hts) as proteins whose synaptic expression is restricted by miR-34. Manipulation of miR-34, Nrx-IV or Hts-M function in motor neurons or muscle supports a model where presynaptic miR-34 inhibits Nrx-IV to influence active zone formation, whereas, postsynaptic miR-34 inhibits Hts to regulate the initiation of bouton formation from presynaptic terminals.


Subject(s)
Calmodulin-Binding Proteins/genetics , Cell Adhesion Molecules, Neuronal/genetics , Drosophila Proteins/genetics , Gene Expression Regulation, Developmental , MicroRNAs/metabolism , Presynaptic Terminals/physiology , Animals , Animals, Genetically Modified , Calmodulin-Binding Proteins/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Larva/growth & development , Morphogenesis/genetics , Mutation , Neuromuscular Junction/cytology , Neuromuscular Junction/growth & development
10.
G3 (Bethesda) ; 10(1): 43-55, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31694853

ABSTRACT

Locomotion is an ancient and fundamental output of the nervous system required for animals to perform many other complex behaviors. Although the formation of motor circuits is known to be under developmental control of transcriptional mechanisms that define the fates and connectivity of the many neurons, glia and muscle constituents of these circuits, relatively little is known about the role of post-transcriptional regulation of locomotor behavior. MicroRNAs have emerged as a potentially rich source of modulators for neural development and function. In order to define the microRNAs required for normal locomotion in Drosophila melanogaster, we utilized a set of transgenic Gal4-dependent competitive inhibitors (microRNA sponges, or miR-SPs) to functionally assess ca. 140 high-confidence Drosophila microRNAs using automated quantitative movement tracking systems followed by multiparametric analysis. Using ubiquitous expression of miR-SP constructs, we identified a large number of microRNAs that modulate aspects of normal baseline adult locomotion. Addition of temperature-dependent Gal80 to identify microRNAs that act during adulthood revealed that the majority of these microRNAs play developmental roles. Comparison of ubiquitous and neural-specific miR-SP expression suggests that most of these microRNAs function within the nervous system. Parallel analyses of spontaneous locomotion in adults and in larvae also reveal that very few of the microRNAs required in the adult overlap with those that control the behavior of larval motor circuits. These screens suggest that a rich regulatory landscape underlies the formation and function of motor circuits and that many of these mechanisms are stage and/or parameter-specific.


Subject(s)
Locomotion/genetics , MicroRNAs/genetics , Animals , Drosophila melanogaster , Ganglia, Invertebrate/metabolism , MicroRNAs/metabolism
11.
Cytoskeleton (Hoboken) ; 77(1-2): 4-15, 2020 01.
Article in English | MEDLINE | ID: mdl-31702858

ABSTRACT

Regulation of the synaptic cytoskeleton is essential to proper neuronal development and wiring. Perturbations in neuronal microtubules (MTs) are associated with numerous pathologies, yet it remains unclear how changes in MTs may be coupled to synapse morphogenesis. Studies have identified many MT regulators that promote synapse growth. However, less is known about the factors that restrict growth, despite the potential links of synaptic overgrowth to severe neurological conditions. Here, we report that dTACC, which is implicated in MT assembly and stability, prevents synapse overgrowth at the Drosophila neuromuscular junction by restricting addition of new boutons throughout larval development. dTACC localizes to the axonal MT lattice and is required to maintain tubulin levels and the integrity of higher-order MT structures in motor axon terminals. While previous reports have demonstrated the roles of MT-stabilizing proteins in promoting synapse growth, our findings suggest that in certain contexts, MT stabilization may correlate with restricted growth.


Subject(s)
Drosophila Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neuromuscular Junction/metabolism , Animals , Drosophila
12.
Cell Rep ; 23(13): 3776-3786, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29949763

ABSTRACT

To discover microRNAs that regulate sleep, we performed a genetic screen using a library of miRNA sponge-expressing flies. We identified 25 miRNAs that regulate baseline sleep; 17 were sleep-promoting and 8 promoted wake. We identified one miRNA that is required for recovery sleep after deprivation and 8 miRNAs that limit the extent of recovery sleep. 65% of the hits belong to human-conserved families. Interestingly, the majority (75%), but not all, of the baseline sleep-regulating miRNAs are required in neurons. Sponges that target miRNAs in the same family, including the miR-92a/92b/310 family and the miR-263a/263b family, have similar effects. Finally, mutation of one of the screen's strongest hits, let-7, using CRISPR/Cas-9, phenocopies sponge-mediated let-7 inhibition. Cell-type-specific and temporally restricted let-7 sponge expression experiments suggest that let-7 is required in the mushroom body both during development and in adulthood. This screen sets the stage for understanding the role of miRNAs in sleep.


Subject(s)
Drosophila/metabolism , MicroRNAs/metabolism , Sleep/genetics , Animals , Circadian Rhythm/genetics , Drosophila/genetics , MicroRNAs/antagonists & inhibitors , Neurons/metabolism
13.
Genetics ; 208(3): 1195-1207, 2018 03.
Article in English | MEDLINE | ID: mdl-29487148

ABSTRACT

We describe a genome-wide microRNA (miRNA)-based screen to identify brain glial cell functions required for circadian behavior. To identify glial miRNAs that regulate circadian rhythmicity, we employed a collection of "miR-sponges" to inhibit miRNA function in a glia-specific manner. Our initial screen identified 20 glial miRNAs that regulate circadian behavior. We studied two miRNAs, miR-263b and miR-274, in detail and found that both function in adult astrocytes to regulate behavior. Astrocyte-specific inhibition of miR-263b or miR-274 in adults acutely impairs circadian locomotor activity rhythms with no effect on glial or clock neuronal cell viability. To identify potential RNA targets of miR-263b and miR-274, we screened 35 predicted miRNA targets, employing RNA interference-based approaches. Glial knockdown of two putative miR-274 targets, CG4328 and MESK2, resulted in significantly decreased rhythmicity. Homology of the miR-274 targets to mammalian counterparts suggests mechanisms that might be relevant for the glial regulation of rhythmicity.


Subject(s)
Circadian Rhythm/genetics , Drosophila/physiology , MicroRNAs/genetics , Neuroglia/metabolism , Animals , Astrocytes , Gene Knockout Techniques , Immunohistochemistry , Locomotion , Organ Specificity/genetics
14.
Curr Opin Neurobiol ; 43: 119-129, 2017 04.
Article in English | MEDLINE | ID: mdl-28388491

ABSTRACT

Effective adaptation of neural circuit function to a changing environment requires many forms of plasticity. Among these, structural plasticity is one of the most durable, and is also an intrinsic part of the developmental logic for the formation and refinement of synaptic connectivity. Structural plasticity of presynaptic sites can involve the addition, remodeling, or removal of pre- and post-synaptic elements. However, this requires coordination of morphogenesis and assembly of the subcellular machinery for neurotransmitter release within the presynaptic neuron, as well as coordination of these events with the postsynaptic cell. While much progress has been made in revealing the cell biological mechanisms of postsynaptic structural plasticity, our understanding of presynaptic mechanisms is less complete.


Subject(s)
Drosophila/physiology , Neuronal Plasticity/physiology , Presynaptic Terminals/physiology , Animals , Drosophila/cytology , Synaptic Transmission
15.
J Cell Sci ; 129(7): 1477-89, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26906422

ABSTRACT

Epithelial bicellular and tricellular junctions are essential for establishing and maintaining permeability barriers. Tricellular junctions are formed by the convergence of three bicellular junctions at the corners of neighbouring epithelia. Gliotactin, a member of the Neuroligin family, is located at theDrosophilatricellular junction, and is crucial for the formation of tricellular and septate junctions, as well as permeability barrier function. Gliotactin protein levels are tightly controlled by phosphorylation at tyrosine residues and endocytosis. Blocking endocytosis or overexpressing Gliotactin results in the spread of Gliotactin from the tricellular junction, resulting in apoptosis, delamination and migration of epithelial cells. We show that Gliotactin levels are also regulated at the mRNA level by micro (mi)RNA-mediated degradation and that miRNAs are targeted to a short region in the 3'UTR that includes a conserved miR-184 target site. miR-184 also targets a suite of septate junction proteins, including NrxIV, coracle and Mcr. miR-184 expression is triggered when Gliotactin is overexpressed, leading to activation of the BMP signalling pathway. Gliotactin specifically interferes with Dad, an inhibitory SMAD, leading to activation of the Tkv type-I receptor and activation of Mad to elevate the biogenesis and expression of miR-184.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Membrane Proteins/metabolism , MicroRNAs/biosynthesis , Nerve Tissue Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , Receptors, Cell Surface/metabolism , Animals , Apoptosis/physiology , Cell Movement/physiology , Cytokines/metabolism , Drosophila Proteins/antagonists & inhibitors , Endocytosis/physiology , Enzyme Activation , Membrane Proteins/genetics , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , Serpins/metabolism , Signal Transduction/genetics , Tight Junctions/physiology
16.
Nat Commun ; 6: 7279, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26081261

ABSTRACT

Although the impact of microRNAs (miRNAs) in development and disease is well established, understanding the function of individual miRNAs remains challenging. Development of competitive inhibitor molecules such as miRNA sponges has allowed the community to address individual miRNA function in vivo. However, the application of these loss-of-function strategies has been limited. Here we offer a comprehensive library of 141 conditional miRNA sponges targeting well-conserved miRNAs in Drosophila. Ubiquitous miRNA sponge delivery and consequent systemic miRNA inhibition uncovers a relatively small number of miRNA families underlying viability and gross morphogenesis, with false discovery rates in the 4-8% range. In contrast, tissue-specific silencing of muscle-enriched miRNAs reveals a surprisingly large number of novel miRNA contributions to the maintenance of adult indirect flight muscle structure and function. A strong correlation between miRNA abundance and physiological relevance is not observed, underscoring the importance of unbiased screens when assessing the contributions of miRNAs to complex biological processes.


Subject(s)
Drosophila/genetics , MicroRNAs/antagonists & inhibitors , Animals , Animals, Genetically Modified , Drosophila/metabolism , Female , Gene Library , Male , MicroRNAs/metabolism , Muscles/metabolism
17.
Genetics ; 200(2): 569-80, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26088433

ABSTRACT

microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. Prior studies have shown that they regulate numerous physiological processes critical for normal development, cellular growth control, and organismal behavior. Here, we systematically surveyed 134 different miRNAs for roles in olfactory learning and memory formation using "sponge" technology to titrate their activity broadly in the Drosophila melanogaster central nervous system. We identified at least five different miRNAs involved in memory formation or retention from this large screen, including miR-9c, miR-31a, miR-305, miR-974, and miR-980. Surprisingly, the titration of some miRNAs increased memory, while the titration of others decreased memory. We performed more detailed experiments on two miRNAs, miR-974 and miR-31a, by mapping their roles to subpopulations of brain neurons and testing the functional involvement in memory of potential mRNA targets through bioinformatics and a RNA interference knockdown approach. This screen offers an important first step toward the comprehensive identification of all miRNAs and their potential targets that serve in gene regulatory networks important for normal learning and memory.


Subject(s)
Drosophila melanogaster/genetics , Memory , MicroRNAs/genetics , Animals , Behavior, Animal , Cholinergic Neurons/metabolism , Gene Expression , Learning , Olfactory Receptor Neurons/metabolism , Time Factors
18.
Elife ; 42015 May 21.
Article in English | MEDLINE | ID: mdl-25997101

ABSTRACT

The mitochondrial contact site and cristae junction (CJ) organizing system (MICOS) dynamically regulate mitochondrial membrane architecture. Through systematic proteomic analysis of human MICOS, we identified QIL1 (C19orf70) as a novel conserved MICOS subunit. QIL1 depletion disrupted CJ structure in cultured human cells and in Drosophila muscle and neuronal cells in vivo. In human cells, mitochondrial disruption correlated with impaired respiration. Moreover, increased mitochondrial fragmentation was observed upon QIL1 depletion in flies. Using quantitative proteomics, we show that loss of QIL1 resulted in MICOS disassembly with the accumulation of a MIC60-MIC19-MIC25 sub-complex and degradation of MIC10, MIC26, and MIC27. Additionally, we demonstrated that in QIL1-depleted cells, overexpressed MIC10 fails to significantly restore its interaction with other MICOS subunits and SAMM50. Collectively, our work uncovers a previously unrecognized subunit of the MICOS complex, necessary for CJ integrity, cristae morphology, and mitochondrial function and provides a resource for further analysis of MICOS architecture.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Multiprotein Complexes/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism , Animals , Cell Line , Cell Respiration/physiology , Drosophila , HEK293 Cells , Humans , Mitochondria/physiology , Muscle Cells/metabolism , Neurons/metabolism , Protein Binding/physiology , Proteomics/methods
19.
PLoS Genet ; 11(5): e1005194, 2015 May.
Article in English | MEDLINE | ID: mdl-25993106

ABSTRACT

RNA interference-related silencing mechanisms concern very diverse and distinct biological processes, from gene regulation (via the microRNA pathway) to defense against molecular parasites (through the small interfering RNA and the Piwi-interacting RNA pathways). Small non-coding RNAs serve as specificity factors that guide effector proteins to ribonucleic acid targets via base-pairing interactions, to achieve transcriptional or post-transcriptional regulation. Because of the small sequence complementarity required for microRNA-dependent post-transcriptional regulation, thousands of microRNA (miRNA) putative targets have been annotated in Drosophila. In Drosophila somatic ovarian cells, genomic parasites, such as transposable elements (TEs), are transcriptionally repressed by chromatin changes induced by Piwi-interacting RNAs (piRNAs) that prevent them from invading the germinal genome. Here we show, for the first time, that a functional miRNA pathway is required for the piRNA-mediated transcriptional silencing of TEs in this tissue. Global miRNA depletion, caused by tissue- and stage-specific knock down of drosha (involved in miRNA biogenesis), AGO1 or gawky (both responsible for miRNA activity), resulted in loss of TE-derived piRNAs and chromatin-mediated transcriptional de-silencing of TEs. This specific TE de-repression was also observed upon individual titration (by expression of the complementary miRNA sponge) of two miRNAs (miR-14 and miR-34) as well as in a miR-14 loss-of-function mutant background. Interestingly, the miRNA defects differentially affected TE- and 3' UTR-derived piRNAs. To our knowledge, this is the first indication of possible differences in the biogenesis or stability of TE- and 3' UTR-derived piRNAs. This work is one of the examples of detectable phenotypes caused by loss of individual miRNAs in Drosophila and the first genetic evidence that miRNAs have a role in the maintenance of genome stability via piRNA-mediated TE repression.


Subject(s)
DNA Transposable Elements , Drosophila Proteins/metabolism , Drosophila/genetics , MicroRNAs/metabolism , Ovarian Follicle/metabolism , RNA Interference , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Female , Gene Expression Regulation , Gene Silencing , MicroRNAs/genetics , Ovarian Follicle/cytology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
20.
J Clin Invest ; 125(2): 681-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25574843

ABSTRACT

Tau is a highly abundant and multifunctional brain protein that accumulates in neurofibrillary tangles (NFTs), most commonly in Alzheimer's disease (AD) and primary age-related tauopathy. Recently, microRNAs (miRNAs) have been linked to neurodegeneration; however, it is not clear whether miRNA dysregulation contributes to tau neurotoxicity. Here, we determined that the highly conserved brain miRNA miR-219 is downregulated in brain tissue taken at autopsy from patients with AD and from those with severe primary age-related tauopathy. In a Drosophila model that produces human tau, reduction of miR-219 exacerbated tau toxicity, while overexpression of miR-219 partially abrogated toxic effects. Moreover, we observed a bidirectional modulation of tau levels in the Drosophila model that was dependent on miR-219 expression or neutralization, demonstrating that miR-219 regulates tau in vivo. In mammalian cellular models, we found that miR-219 binds directly to the 3'-UTR of the tau mRNA and represses tau synthesis at the post-transcriptional level. Together, our data indicate that silencing of tau by miR-219 is an ancient regulatory mechanism that may become perturbed during neurofibrillary degeneration and suggest that this regulatory pathway may be useful for developing therapeutics for tauopathies.


Subject(s)
3' Untranslated Regions , Alzheimer Disease/metabolism , MicroRNAs/metabolism , Protein Biosynthesis , tau Proteins/biosynthesis , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Disease Models, Animal , Drosophila melanogaster , Humans , MicroRNAs/genetics , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...