Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 152(2): 024104, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31941326

ABSTRACT

The effects of dynamics and dissipation on ultrafast intersystem crossings are studied for a dissipative two-level system coupled to a local vibronic mode. A method of amplitude damping of the wave packet is presented that accounts better for the position of the wave packet and avoids spurious transitions between potential wells. It is demonstrated that Fermi's golden rule, the typical semiquantitative approach to extract population transfer rates from potential landscapes, only holds under limited conditions. Generally, the effects of dynamics and dissipation lead to deviations from the expected exponential population transfer, strong changes in transfer times and total population transfer, and significant recurrence or "spill back" of the wave packet.

2.
Sci Rep ; 7(1): 6672, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28751767

ABSTRACT

Ultrafast spincrossover is studied in Fe-Co Prussian blue analogues using a dissipative quantum-mechanical model of a cobalt ion coupled to a breathing mode. All electronic interactions are treated on an equal footing. It is theoretically demonstrated that the divalent cobalt ion reaches 90% of the [Formula: see text] value within 20 fs after photoexciting a low-spin Co3+ ion by an iron-to-cobalt charge transfer. The doublet-to-quartet spin crossover is significantly faster than the oscillation period of the breathing mode. The system relaxes to the lowest manifold of divalent cobalt (4 T 1) in 150-200 fs. Strong oscillations in spin-orbit coupling and the involvement of higher-lying quartets are found.

3.
Phys Rev Lett ; 116(21): 216402, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27284666

ABSTRACT

The spin-orbit Mott insulator Sr_{3}Ir_{2}O_{7} provides a fascinating playground to explore insulator-metal transition driven by intertwined charge, spin, and lattice degrees of freedom. Here, we report high-pressure electric resistance and resonant inelastic x-ray scattering measurements on single-crystal Sr_{3}Ir_{2}O_{7} up to 63-65 GPa at 300 K. The material becomes a confined metal at 59.5 GPa, showing metallicity in the ab plane but an insulating behavior along the c axis. Such an unusual phenomenon resembles the strange metal phase in cuprate superconductors. Since there is no sign of the collapse of spin-orbit or Coulomb interactions in x-ray measurements, this novel insulator-metal transition is potentially driven by a first-order structural change at nearby pressures. Our discovery points to a new approach for synthesizing functional materials.

4.
Inorg Chem ; 53(10): 4833-9, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24779549

ABSTRACT

The electronic structure of the low-dimensional 4d(5) oxides Sr2RhO4 and Ca3CoRhO6 is herein investigated by embedded-cluster quantum chemistry calculations. A negative tetragonal-like t2g splitting is computed in Sr2RhO4 and a negative trigonal-like splitting is predicted for Ca3CoRhO6, in spite of having positive tetragonal distortions in the former material and cubic oxygen octahedra in the latter. Our findings bring to the foreground the role of longer-range crystalline anisotropy in generating noncubic potentials that compete with local distortions of the ligand cage, an issue not addressed in standard textbooks on crystal-field theory. We also show that sizable t2g(5)-t2g(4)eg(1) couplings via spin-orbit interactions produce in Sr2RhO4 ⟨Z⟩ = ⟨Σ(i)l(i)·s(i)⟩ ground-state expectation values significantly larger than 1, quite similar to theoretical and experimental data for 5d(5) spin-orbit-driven oxides such as Sr2IrO4. On the other hand, in Ca3CoRhO6, the ⟨Z⟩ values are lower because of larger t2g-eg splittings. Future X-ray magnetic circular dichroism experiments on these 4d oxides will constitute a direct test for the ⟨Z⟩ values that we predict here, the importance of many-body t2g-eg couplings mediated by spin-orbit interactions, and the role of low-symmetry fields associated with the extended surroundings.

5.
J Phys Condens Matter ; 26(14): 145501, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24637347

ABSTRACT

By using first-principles density functional theory calculations for (LaNiO3)m/(SrTiO3)n superlattices, we report a systematic electronic response to the interface geometry. It is found that the density of states at the Fermi level of metallic nickelate layers is significantly reduced without charge transfer in the vicinity of the interface to the insulating SrTiO3. This type of electronic state redistribution is clearly distinctive from other interface phenomena such as charge and orbital reconstruction. Our result sheds new light on the understanding of the nickelates and other transition-metal oxide heterostructures.


Subject(s)
Electrons , Niobium/chemistry , Oxides/chemistry , Quantum Theory , Strontium/chemistry , Titanium/chemistry , Surface Properties
6.
Phys Rev Lett ; 112(5): 056401, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24580615

ABSTRACT

Vanadium sesquioxide, V2O3, is a prototypical metal-to-insulator system where, in temperature-dependent studies, the transition always coincides with a corundum-to-monoclinic structural transition. As a function of pressure, V2O3 follows the expected behavior of increased metallicity due to a larger bandwidth for pressures up to 12.5 GPa. Surprisingly, for higher pressures when the structure becomes unstable, the resistance starts to increase. Around 32.5 GPa at 300 K, we observe a novel pressure-induced corundum-to-monoclinic transition between two metallic phases, showing that the structural phase transition can be decoupled from the metal-insulator transition. Using x-ray Raman scattering, we find that screening effects, which are strong in the corundum phase, become weakened at high pressures. Theoretical calculations indicate that this can be related to a decrease in coherent quasiparticle strength, suggesting that the high-pressure phase is likely a critical correlated metal, on the verge of Mott-insulating behavior.

7.
Phys Rev Lett ; 104(4): 046801, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-20366726

ABSTRACT

We report how ultrathin MgO films on Ag(001) surfaces can be used to control the emittance properties of photocathodes. In addition to substantially reducing the work function of the metal surface, the MgO layers also favorably influence the shape of the surface bands resulting in the generation of high-brightness electron beams. As the number of MgO surface layers varies from 0 to 3, the emitted electron beam becomes gradually brighter, reducing its transverse emittance to 0.06 mm mrad. We suggest the use of such photocathodes for the development of free-electron x-ray lasers and energy-recovery linac x-ray sources.

8.
Phys Rev Lett ; 104(6): 067401, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-20366852

ABSTRACT

The mechanism behind fast intersystem crossing in transition-metal complexes is shown to be a result of the dephasing of the photoexcited state to the phonon continuum of a different state with a significantly different transition metal-ligand distance. The coupling is a result of the spin-orbit interaction causing a change in the local moment. A recurrence to the initial state is prevented by the damping of the phonon oscillation. The decay time is faster than the oscillation frequency of the transition metal-ligand stretch mode, in agreement with experiment. For energies above the region where the strongest coupling occurs, a slower "leakage-type" decay is observed. If the photoexcited state is lower in energy than the state it couples to, then there is no decay.

9.
J Comput Chem ; 31(10): 2078-86, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20087903

ABSTRACT

This article presents several considerations for the appropriate choice of internal coordinates in various complex chemical systems. The appropriate and black box recognition of internal coordinates is of fundamental importance for the extension of internal coordinate algorithms to all fields where previously Cartesian coordinates were the preferred means of geometry manipulations. Such fields range from local and global geometry optimizations to molecular dynamics as applied to a wide variety of chemical systems. We present a robust algorithm that is capable to quickly determine the appropriate choice of internal coordinates in a wide range of atomic arrangements.

10.
Phys Rev Lett ; 102(23): 237201, 2009 Jun 12.
Article in English | MEDLINE | ID: mdl-19658965

ABSTRACT

Low temperature Mn K-edge x-ray magnetic circular dichroism and x-ray diffraction measurements were carried out to investigate the stability of the ferromagnetic ground state in manganite La0.75Ca0.25MnO3 under nearly uniform compression using diamond anvil cells. The magnetic dichroism signal gradually decreases with pressure and disappears at 23 GPa, and meanwhile a uniaxial compression of MnO6 octahedra along the b axis is observed to continuously increase with pressure and become anomalously large at 23.5 GPa. These changes are attributed to a ferromagnetic-antiferromagnetic transition that is associated with orbital ordering at high pressure.

11.
Phys Rev Lett ; 98(15): 157401, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17501381

ABSTRACT

We predict the presence of strong dichroic effects induced by x-ray beams carrying orbital angular momentum (OAM). Taking the difference between spectra obtained with positive and negative OAM states allows the separation of quadrupolar from dipolar transitions at, e.g., the transition-metal K edges, enabling the study of the unoccupied states in the absence of strong core-hole effects. We study the dependence of OAM-induced x-ray dichroism on different polarization vectors and derive sum rules relating the integrated intensity to ground-state hole densities. Calculations of spectral line shapes for cuprates, manganites, and ruthenates confirm the strong OAM-induced dichroism and indicate the potential of this new spectroscopy in the fields of orbital physics and magnetism.

12.
Phys Rev Lett ; 96(11): 117404, 2006 Mar 24.
Article in English | MEDLINE | ID: mdl-16605871

ABSTRACT

The resonant inelastic x-ray scattering (RIXS) cross section at the L and M edges of transition-metal compounds is studied using an effective scattering operator. The intensities of the elastic peak and for spin-flip processes are derived. It is shown how the polarization dependence can be used to select transitions. Comparisons are made with experiment. A detailed analysis of the polarization and angular dependence of L- and M-edge RIXS for divalent copper compounds, such as the high-Tc superconductors, is given.

13.
Phys Rev Lett ; 97(24): 247202, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17280313

ABSTRACT

The photoinduced magnetism in Mn-tetracyanoethylene (TCNE) molecule-based magnets is ascribed to charge-transfer excitations from manganese to TCNE. Charge-transfer energies are calculated using density functional theory; photoinduced magnetization is described using a model Hamiltonian based on a double-exchange mechanism. Photoexciting electrons from the manganese core spins into the lowest unoccupied orbital of TCNE with photon energies around 3 eV increase the magnetization through a reduction of the canting angle of the manganese core spins for an average electron density on TCNE less than one. When photoexciting with a smaller energy, divalent TCNE molecules are formed. The delocalization of the excited electron causes a local spin flip of a manganese core spin.

14.
Phys Rev Lett ; 92(21): 219701; author reply 219702, 2004 May 28.
Article in English | MEDLINE | ID: mdl-15245326
SELECTION OF CITATIONS
SEARCH DETAIL
...