Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Res ; 3(1): 10, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23406885

ABSTRACT

BACKGROUND: 11C-PiB has been developed as a positron-emission tomography (PET) ligand for evaluating fibrillar ß-amyloid (Aß) in the human brain. The ligand is rapidly metabolized, with approximately 10% of intact tracer remaining 30 min after injection. When 11C-PiB is used as a treatment endpoint in intervention studies for Alzheimer's disease (AD), a concern is whether the clearance of the tracer changes from one scan to the next, increasing within subject variability in the PET signal. Subjects enrolled in AD trials may start or stop medications that inhibit or induce xenobiotic metabolizing enzymes such as the cytochrome P450 (CYP) isozymes. FINDINGS: We conducted CYP phenotyping in recombinantly expressed systems, and in human liver microsomes, to evaluate CYP isozyme contributions to the metabolism of PiB (carrier) and profiled microsomal and hepatocyte incubations for metabolites. The metabolism of PiB appears to be polyzymic, with direct conjugation via UDP-glucuronosyltransferases (UGTs) also occurring. CONCLUSION: It is unlikely that CYP inhibition or induction will significantly influence the clearance of 11C-PiB.

2.
Rapid Commun Mass Spectrom ; 19(8): 1069-74, 2005.
Article in English | MEDLINE | ID: mdl-15776495

ABSTRACT

A liquid chromatography/mass spectrometry (LC/MS) method using an atmospheric pressure chemical ionisation source was used to measure the metabolic stability and metabolite identification of 7-methoxymethylthiazolo[3,2-a]pyrimidin-5-one derivative (1) in human liver microsomes. After 15 min incubation with human liver microsomes, compound 1 exhibited metabolic turnover of 44%. Data-dependent tandem mass spectrometry (MS/MS) scanning was used to generate product ion spectra from the protonated ions of the compound and its metabolites. An unusual metabolite at m/z 407 corresponding to the [M-24+H]+ ion was identified for compound 1. Interestingly, the formation of the [M-24+H]+ ion was not observed in the analogues wherein the fused thieno double bond was substituted (2) and the thieno group replaced by a fused benzo derivative (3). Compounds 2 and 3 exhibited metabolic turnovers of 24 and 30%, yielding oxidative metabolites corresponding to [M+16] and [M+32]+, respectively. Based on these facts the mechanism for [M-24]+ formation in compound 1 through an initial epoxide formation on the double bond of the fused thieno ring followed by hydrolytic ring opening and deacylation is envisaged.


Subject(s)
Antipsychotic Agents/metabolism , Chromatography, High Pressure Liquid , Microsomes, Liver/metabolism , Pyrimidinones/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Thiazoles/metabolism , Humans , Pyrimidinones/analysis , Thiazoles/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...