Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 130(1): 010402, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36669213

ABSTRACT

Any physical system evolves at a finite speed that is constrained not only by the energetic cost but also by the topological structure of the underlying dynamics. In this Letter, by considering such structural information, we derive a unified topological speed limit for the evolution of physical states using an optimal transport approach. We prove that the minimum time required for changing states is lower bounded by the discrete Wasserstein distance, which encodes the topological information of the system, and the time-averaged velocity. The bound obtained is tight and applicable to a wide range of dynamics, from deterministic to stochastic, and classical to quantum systems. In addition, the bound provides insight into the design principles of the optimal process that attains the maximum speed. We demonstrate the application of our results to chemical reaction networks and interacting many-body quantum systems.

2.
Phys Rev Lett ; 128(14): 140602, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35476476

ABSTRACT

The thermodynamic and kinetic uncertainty relations indicate trade-offs between the relative fluctuation of observables and thermodynamic quantities such as dissipation and dynamical activity. Although these relations have been well studied for classical systems, they remain largely unexplored in the quantum regime. In this Letter, we investigate such trade-off relations for Markovian open quantum systems whose underlying dynamics are quantum jumps, such as thermal processes and quantum measurement processes. Specifically, we derive finite-time lower bounds on the relative fluctuation of both dynamical observables and their first passage times for arbitrary initial states. The bounds imply that the precision of observables is constrained not only by thermodynamic quantities but also by quantum coherence. We find that the product of the relative fluctuation and entropy production or dynamical activity is enhanced by quantum coherence in a generic class of dissipative processes of systems with nondegenerate energy levels. Our findings provide insights into the survival of the classical uncertainty relations in quantum cases.

3.
Phys Rev Lett ; 128(1): 010602, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35061471

ABSTRACT

The Landauer principle states that any logically irreversible information processing must be accompanied by dissipation into the environment. In this Letter, we investigate the heat dissipation associated with finite-time information erasure and the effect of quantum coherence in such processes. By considering a scenario wherein information is encoded in an open quantum system whose dynamics are described by the Markovian Lindblad equation, we show that the dissipated heat is lower bounded by the conventional Landauer cost, as well as a correction term inversely proportional to the operational time. To clarify the relation between quantum coherence and dissipation, we derive a lower bound for heat dissipation in terms of quantum coherence. This bound quantitatively implies that the creation of quantum coherence in the energy eigenbasis during the erasure process inevitably leads to additional heat costs. The obtained bounds hold for arbitrary operational time and control protocol. By following an optimal control theory, we numerically present an optimal protocol and illustrate our findings by using a single-qubit system.

4.
Phys Rev Lett ; 127(19): 190601, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34797124

ABSTRACT

We consider the thermal relaxation process of a quantum system attached to single or multiple reservoirs. Quantifying the degree of irreversibility by entropy production, we prove that the irreversibility of the thermal relaxation is lower bounded by a relative entropy between the unitarily evolved state and the final state. The bound characterizes the state discrepancy induced by the nonunitary dynamics, and thus reflects the dissipative nature of irreversibility. Intriguingly, the bound can be evaluated solely in terms of the initial and final states and the system Hamiltonian, thereby providing a feasible way to estimate entropy production without prior knowledge of the underlying coupling structure. This finding refines the second law of thermodynamics and reveals a universal feature of thermal relaxation processes.

5.
Phys Rev Lett ; 126(1): 010601, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33480766

ABSTRACT

We derive geometrical bounds on the irreversibility in both quantum and classical Markovian open systems that satisfy the detailed balance condition. Using information geometry, we prove that irreversible entropy production is bounded from below by a modified Wasserstein distance between the initial and final states, thus strengthening the Clausius inequality in the reversible-Markov case. The modified metric can be regarded as a discrete-state generalization of the Wasserstein metric, which has been used to bound dissipation in continuous-state Langevin systems. Notably, the derived bounds can be interpreted as the quantum and classical speed limits, implying that the associated entropy production constrains the minimum time of transforming a system state. We illustrate the results on several systems and show that a tighter bound than the Carnot bound for the efficiency of quantum heat engines can be obtained.

6.
Phys Rev E ; 101(4-1): 042138, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32422750

ABSTRACT

Entropy production characterizes the thermodynamic irreversibility and reflects the amount of heat dissipated into the environment and free energy lost in nonequilibrium systems. According to the thermodynamic uncertainty relation, we propose a deterministic method to estimate the entropy production from a single trajectory of system states. We explicitly and approximately compute an optimal current that yields the tightest lower bound using predetermined basis currents. Notably, the obtained tightest lower bound is intimately related to the multidimensional thermodynamic uncertainty relation. By proving the saturation of the thermodynamic uncertainty relation in the short-time limit, the exact estimate of the entropy production can be obtained for overdamped Langevin systems, irrespective of the underlying dynamics. For Markov jump processes, because the attainability of the thermodynamic uncertainty relation is not theoretically ensured, the proposed method provides the tightest lower bound for the entropy production. When entropy production is the optimal current, a more accurate estimate can be further obtained using the integral fluctuation theorem. We illustrate the proposed method using three systems: a four-state Markov chain, a periodically driven particle, and a multiple bead-spring model. The estimated results in all examples empirically verify the effectiveness and efficiency of the proposed method.

7.
Phys Rev E ; 102(6-1): 062132, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33465987

ABSTRACT

The total entropy production quantifies the extent of irreversibility in thermodynamic systems, which is nonnegative for any feasible dynamics. When additional information such as the initial and final states or moments of an observable is available, it is known that tighter lower bounds on the entropy production exist according to the classical speed limits and the thermodynamic uncertainty relations. Here we obtain a universal lower bound on the total entropy production in terms of probability distributions of an observable in the time forward and backward processes. For a particular case, we show that our universal relation reduces to a classical speed limit, imposing a constraint on the speed of the system's evolution in terms of the Hatano-Sasa entropy production. Notably, the obtained classical speed limit is tighter than the previously reported bound by a constant factor. Moreover, we demonstrate that a generalized thermodynamic uncertainty relation can be derived from another particular case of the universal relation. Our uncertainty relation holds for systems with time-reversal symmetry breaking and recovers several existing bounds. Our approach provides a unified perspective on two closely related classes of inequality: classical speed limits and thermodynamic uncertainty relations.

8.
Phys Rev Lett ; 123(11): 110602, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31573234

ABSTRACT

The fluctuation theorem is the fundamental equality in nonequilibrium thermodynamics that is used to derive many important thermodynamic relations, such as the second law of thermodynamics and the Jarzynski equality. Recently, the thermodynamic uncertainty relation was discovered, which states that the fluctuation of observables is lower bounded by the entropy production. In the present Letter, we derive a thermodynamic uncertainty relation from the fluctuation theorem. We refer to the obtained relation as the fluctuation theorem uncertainty relation, and it is valid for arbitrary dynamics, stochastic as well as deterministic, and for arbitrary antisymmetric observables for which a fluctuation theorem holds. We apply the fluctuation theorem uncertainty relation to an overdamped Langevin dynamics for an antisymmetric observable. We demonstrate that the antisymmetric observable satisfies the fluctuation theorem uncertainty relation but does not satisfy the relation reported for current-type observables in continuous-time Markov chains. Moreover, we show that the fluctuation theorem uncertainty relation can handle systems controlled by time-symmetric external protocols, in which the lower bound is given by the work exerted on the systems.

9.
Phys Rev E ; 100(3-1): 032130, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31640023

ABSTRACT

A trade-off between the precision of an arbitrary current and the dissipation, known as the thermodynamic uncertainty relation, has been investigated for various Markovian systems. Here, we study the thermodynamic uncertainty relation for underdamped Langevin dynamics. By employing information inequalities, we prove that for such systems, the relative fluctuation of a current at a steady state is constrained by both the entropy production and the average dynamical activity. We find that unlike what is the case for overdamped dynamics, the dynamical activity plays an important role in the bound. We illustrate our results with two systems, a single-well potential system and a periodically driven Brownian particle model, and numerically verify the inequalities.

10.
Phys Rev E ; 100(1-1): 012134, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499914

ABSTRACT

The thermodynamic uncertainty relation, which establishes a universal trade-off between nonequilibrium current fluctuations and dissipation, has been found for various Markovian systems. However, this relation has not been revealed for non-Markovian systems; therefore, we investigate the thermodynamic uncertainty relation for time-delayed Langevin systems. We prove that the fluctuation of arbitrary dynamical observables is constrained by the Kullback-Leibler divergence between the distributions of the forward path and its reversed counterpart. Specifically, for observables that are antisymmetric under time reversal, the fluctuation is bounded from below by a function of a quantity that can be identified as a generalization of the total entropy production in Markovian systems. We also provide a lower bound for arbitrary observables that are odd under position reversal. The term in this bound reflects the extent to which the position symmetry has been broken in the system and can be positive even in equilibrium. Our results hold for finite observation times and a large class of time-delayed systems because detailed underlying dynamics are not required for the derivation. We numerically verify the derived uncertainty relations using two single time-delay systems and one distributed time-delay system.

11.
Phys Rev E ; 99(6-1): 062126, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330674

ABSTRACT

The thermodynamic uncertainty relation is an inequality stating that it is impossible to attain higher precision than the bound defined by entropy production. In statistical inference theory, information inequalities assert that it is infeasible for any estimator to achieve an error smaller than the prescribed bound. Inspired by the similarity between the thermodynamic uncertainty relation and the information inequalities, we apply the latter to systems described by Langevin equations, and we derive the bound for the fluctuation of thermodynamic quantities. When applying the Cramér-Rao inequality, the obtained inequality reduces to the fluctuation-response inequality. We find that the thermodynamic uncertainty relation is a particular case of the Cramér-Rao inequality, in which the Fisher information is the total entropy production. Using the equality condition of the Cramér-Rao inequality, we find that the stochastic total entropy production is the only quantity that can attain equality in the thermodynamic uncertainty relation. Furthermore, we apply the Chapman-Robbins inequality and obtain a relation for the lower bound of the ratio between the variance and the sensitivity of systems in response to arbitrary perturbations.

12.
Phys Rev E ; 99(1-1): 012416, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30780338

ABSTRACT

Many biological activities are induced by cellular chemical reactions of diffusing reactants. The dynamics of such systems can be captured by stochastic reaction networks. A recent numerical study has shown that diffusion can significantly enhance the fluctuations in gene regulatory networks. However, the universal relation between diffusion and stochastic system dynamics remains veiled. Within the approximation of reaction-diffusion master equation (RDME), we find general relation that the steady-state distribution in complex balanced networks is diffusion-independent. Here, complex balance is the nonequilibrium generalization of detailed balance. We also find that for a diffusion-included network with a Poisson-like steady-state distribution, the diffusion can be ignored at steady state. We then derive a necessary and sufficient condition for networks holding such steady-state distributions. Moreover, we show that for linear reaction networks the RDME reduces to the chemical master equation, which implies that the stochastic dynamics of networks is unaffected by diffusion at any arbitrary time. Our findings shed light on the fundamental question of when diffusion can be neglected, or (if nonnegligible) its effects on the stochastic dynamics of the reaction network.

SELECTION OF CITATIONS
SEARCH DETAIL
...