Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35744201

ABSTRACT

The purpose of this study was to measure the strength of various bamboo fibres and their epoxy composites based on the bamboo ages and harvesting seasons. Three representative samples of 1-3-year-old bamboo plants were collected in November and February. Bamboo fibres and their epoxy composites had the highest tensile strength and Young's modulus at 2 years old and in November. The back-calculated tensile strengths using the "rule of mixture" of Injibara, Kombolcha, and Mekaneselam bamboo-fibre-reinforced epoxy composites were 548 ± 40-422 ± 33 MPa, 496 ± 16-339 ± 30 MPa, and 541 ± 21-399 ± 55 MPa, whereas the back-calculated Young's moduli using the "rule of mixture" were 48 ± 5-37 ± 3 GPa, 36 ± 4-25 ± 3 GPa, and 44 ± 2-40 ± 2 GPa, respectively. The tensile strengths of the Injibara, Kombolcha, and Mekaneselam bamboo-fibre-reinforced epoxy composites were 227 ± 14-171 ± 22 MPa, 255 ± 18-129 ± 15 MPa, and 206 ± 19-151 ± 11 MPa, whereas Young's moduli were 21 ± 2.9-16 ± 4.24 GPa, 18 ± 0.8-11 ± 0.51 GPa, and 18 ± 0.85-16 ± 0.82 GPa respectively. The highest to the lowest tensile strengths and Young's moduli of bamboo fibres and their epoxy composites were Injibara, Mekaneselam, and Kombolcha, which were the local regional area names from these fibres were extracted. The intended functional application of the current research study is the automobile industries of headliners, which substitute the conventional materials of glass fibres.

2.
Biomacromolecules ; 23(6): 2243-2254, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35549173

ABSTRACT

Cellulose nanocrystals (CNCs) offer excellent mechanical properties. However, measuring the strength by performing reliable experiments at the nanoscale is challenging. In this paper, we model Iß crystalline cellulose using reactive molecular dynamics simulations. Taking the fibril twist into account, structural changes and hydrogen-bonding characteristics of CNCs during the tensile test are inspected and the failure mechanism of CNCs is analyzed down to the scale of individual bonds. The C4-O4 glycosidic bond is found to be responsible for the failure of CNCs. Finally, the effect of strain rate on ultimate properties is analyzed and a nonlinear model is used to predict the ultimate strength of 9.2 GPa and ultimate strain of 8.5% at a 1 s-1 strain rate. This study sheds light on the applications of cellulose in nanocomposites and further modeling of cellulose nanofibres.


Subject(s)
Nanocomposites , Nanoparticles , Cellulose/chemistry , Molecular Dynamics Simulation , Nanocomposites/chemistry , Nanoparticles/chemistry , Tensile Strength
3.
Carbohydr Polym ; 270: 118364, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34364609

ABSTRACT

In this work, we study interactions of five different hemicellulose models, i.e. Galactoglucomannan, O-Acetyl-Galactoglucomannan, Fuco-Galacto-Xyloglucan, 4-O-Methylglucuronoxylan, and 4-O-Methylglucuronoarabinoxylan, and their respective binding strength to cellulose nanocrystals by molecular dynamics simulations. Glucuronoarabinoxylan showed the highest free energy of binding, whereas Xyloglucan had the lowest interaction energies amongst the five models. We further performed simulated shear tests and concluded that failure mostly happens at the inter-molecular interaction level within the hemicellulose fraction, rather than at the interface with cellulose. The presence of water molecules seems to have a weakening effect on the interactions of hemicellulose and cellulose, taking up the available hydroxyl groups on the surface of the cellulose for hydrogen bonding. We believe that these studies can shed light on better understanding of plant cell walls, as well as providing evidence on variability of the structures of different plant sources for extractions, purification, and operation of biorefineries.


Subject(s)
Cellulose/chemistry , Nanoparticles/chemistry , Polysaccharides/chemistry , Adsorption , Cell Wall/chemistry , Glucans/chemistry , Hydrogen Bonding , Magnetic Resonance Spectroscopy/methods , Mannans/chemistry , Molecular Dynamics Simulation , Shear Strength , Water/chemistry , Xylans/chemistry
4.
Carbohydr Polym ; 235: 115946, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32122482

ABSTRACT

Atomistic modelling of cellulose has widely been investigated for years using molecular dynamics simulations. In this paper, we model Iß crystalline cellulose as well as develop a model including dislocations in between the crystal regions. The model including dislocations shows a tensile modulus of 109 GPa, 25% lower than that of the fully crystalline model (146 GPa). The change in dihedral angle preferences is analysed, and its effect on hydrogen bonding pattern is assessed. How presence of hydrogen bonds contributes to elastic properties of cellulose nano-fibrils is shown. Effect of water on the elastic modulus of fibrils is also investigated. Moreover, an illustration is given of how the tensile behaviour of fibrils is controlled by a synergy between the geometry changes occurring at the glycosidic linkage, reflected by specific torsional and glycosidic angles. These findings can be useful in further modelling of cellulosic fibrils at the atomistic and coarse-grained scales.

5.
Langmuir ; 33(34): 8447-8454, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28767248

ABSTRACT

Wetting dynamics drive numerous processes involving liquids in contact with solid substrates with a wide range of geometries. The spreading dynamics of organic liquids and liquid metals at, respectively, room temperature and >1000 °C have been studied extensively, both experimentally and numerically; however, almost no attention has been paid to the wetting behavior of molten drops of thermoplastic polymers, despite its importance, for example, in the processing of fiber-reinforced polymer composites. Indeed, the ability of classical theories of dynamic wetting, that is, the hydrodynamic and the molecular-kinetic theories, to model these complex liquids is unknown. We have therefore investigated the spreading dynamics on glass, over temperatures between 200 and 260 °C, of two thermoplastics: polypropylene (PP) and poly(vinylidene fluoride) (PVDF). PP and PVDF showed, respectively, the highest and lowest slip lengths due to their different interactions with the glass substrate. The jump lengths of PP and PVDF are comparable to their Kuhn segment lengths, suggesting that the wetting process of these polymers is mediated by segmental displacements. The present work not only provides evidence of the suitability of the classical models to model dynamic wetting of molten polymers but also advances our understanding of the wetting dynamics of molten thermoplastics at the liquid/solid interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...