Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 282(6): 3766-77, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-17170118

ABSTRACT

Tumor necrosis factor (TNF)-alpha is a major cytokine produced by alveolar macrophages in response to pathogen-associated molecular patterns such as lipopolysaccharide. TNF-alpha secretion is regulated at both transcriptional and post-transcriptional levels. Post-transcriptional regulation occurs by modulation of TNF-alpha mRNA stability via the binding of tristetraprolin (TTP) to the adenosine/uridine-rich elements found in the 3'-untranslated region of the TNF-alpha transcript. Phosphorylation plays important roles in modulating mRNA stability, because activation of p38 MAPK by lipopolysaccharide stabilizes TNF-alpha mRNA. We hypothesized that the protein phosphatase 2A (PP2A) regulates this signaling pathway. Our results show that inhibition of PP2A by okadaic acid or small interference RNA significantly enhanced the stability of TNF-alpha mRNA. This result was associated with increased phosphorylation of p38 MAPK and MAPK-activated kinase 2 (MK-2). PP2A inhibition increased TTP phosphorylation and enhanced complex formation with chaperone protein 14-3-3. TTP physically interacted with PP2A in transfected mammalian cells. A functional consequence of TTP-14-3-3 complex formation appeared to be protection of TTP from dephosphorylation by inhibition of the binding of PP2A to phosphorylated TTP. Mutation of the MK-2 phosphorylation sites of TTP did not influence TNF-alpha adenosine/uridine-rich element binding and did not alter the increased TNF-alpha 3'-untranslated region-dependent luciferase activity induced by PP2A-small interference RNA silencing. Our data indicate that, although phosphorylation stabilizes TNF-alpha mRNA, PP2A regulates the mRNA stability by modulating the phosphorylation state of members of the p38/MK-2/TTP pathway.


Subject(s)
14-3-3 Proteins/metabolism , Phosphoprotein Phosphatases/physiology , RNA Stability , RNA, Messenger/metabolism , Tristetraprolin/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Humans , Lipopolysaccharides/pharmacology , Macrophages, Alveolar/metabolism , Mice , Okadaic Acid/pharmacology , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphorylation , Protein Phosphatase 2 , RNA, Small Interfering/pharmacology
2.
J Bacteriol ; 186(10): 3173-81, 2004 May.
Article in English | MEDLINE | ID: mdl-15126479

ABSTRACT

The FliG protein is a central component of the bacterial flagellar motor. It is one of the first proteins added during assembly of the flagellar basal body, and there are 26 copies per motor. FliG interacts directly with the Mot protein complex of the stator to generate torque, and it is a crucial player in switching the direction of flagellar rotation from clockwise (CW) to counterclockwise and vice versa. A primarily helical linker joins the N-terminal assembly domain of FliG, which is firmly attached to the FliF protein of the MS ring of the basal body, to the motility domain that interacts with MotA/MotB. We report here the results of a mutagenic analysis focused on what has been called the hinge region of the linker. Residue substitutions in this region generate a diversity of phenotypes, including motors that are strongly CW biased, infrequent switchers, rapid switchers, and transiently or permanently paused. Isolation of these mutants was facilitated by a "sensitizing" mutation (E232G) outside of the hinge region that was accidentally introduced during cloning of the chromosomal fliG gene into our vector plasmid. This mutation partially interferes with flagellar assembly and accentuates the defects associated with mutations that by themselves have little phenotypic consequence. The effects of these mutations are analyzed in the context of a conformational-coupling model for motor switching and with respect to the structure of the C-terminal 70% of FliG from Thermotoga maritima.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Mutation , Amino Acid Sequence , Flagella/chemistry , Molecular Sequence Data , Phenotype , Protein Conformation , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL
...