Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Sci Rep ; 13(1): 23036, 2023 12 27.
Article in English | MEDLINE | ID: mdl-38155265

ABSTRACT

Intestinal fibrostenosis in patients with Crohn's disease (CD) is a common and untreatable comorbidity that is notoriously difficult to monitor. We aimed to find metabolites associated with the presence of fibrostenosis in patients with CD using targeted and untargeted metabolomics analyses of serum and primary cell cultures using hyphenated ultra-high performance liquid chromatography high-resolution mass spectrometry. Targeted metabolomics revealed 11 discriminating metabolites in serum, which were enriched within the arginine and proline metabolism pathway. Based on untargeted metabolomics and discriminant analysis, 166 components showed a high predictive value. In addition, human intestinal fibroblasts isolated from stenotic tissue were characterized by differential levels of medium-chain dicarboxylic acids, which are proposed as an energy source through beta-oxidation, when oxidative phosphorylation is insufficient. Another energy providing pathway in such situations is anaerobic glycolysis, a theory supported by increased expression of hexokinase 2 and solute carrier family 16 member 1 in stenotic fibroblasts. Of interest, four (unannotated) metabolic components showed a negative correlation with hexokinase 2 gene expression. Together, this study provides a discriminative metabolic fingerprint in the serum and in intestinal fibroblasts of stenotic and non-stenotic patients with CD suggestive for increased production of building blocks for collagen synthesis and increased glycolysis.


Subject(s)
Crohn Disease , Humans , Crohn Disease/metabolism , Hexokinase/metabolism , Metabolomics/methods , Constriction, Pathologic/complications , Metabolome
2.
Eur Radiol ; 33(9): 5943-5952, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37071162

ABSTRACT

OBJECTIVES: To investigate the value of magnetization transfer (MT) MRI and texture analysis (TA) of T2-weighted MR images (T2WI) in the assessment of intestinal fibrosis in a mouse model. METHODS: Chronic colitis was induced in mice by cyclic administration of dextran sodium sulphate (DSS) resulting in chronic inflammation and progressive bowel fibrosis. Mice underwent 7-T MR imaging at various time points. Bowel wall MT ratio (MTR) and textural features (skewness, kurtosis, entropy), extracted by a filtration histogram technique, were correlated with histopathology. Performance of both techniques were validated using antifibrotic therapy. Finally, a retrospective study was conducted in five patients with Crohn's disease (CD) who underwent bowel surgery. RESULTS: MTR and texture entropy correlated with histopathological fibrosis (r = .85 and .81, respectively). Entropy was superior to MTR for monitoring bowel fibrosis in the presence of coexisting inflammation (linear regression R2 = .93 versus R2 = .01). Furthermore, texture entropy was able to assess antifibrotic therapy response (placebo mice versus treated mice at endpoint scan; Δmean = 0.128, p < .0001). An increase in entropy was indicative of fibrosis accumulation in human CD strictures (inflammation: 1.29; mixed strictures: 1.4 and 1.48; fibrosis: 1.73 and 1.9). CONCLUSION: MT imaging and TA of T2WI can both noninvasively detect established intestinal fibrosis in a mouse model. However, TA is especially useful for the longitudinal quantification of fibrosis in mixed inflammatory-fibrotic tissue, as well as for antifibrotic treatment response evaluation. This accessible post-processing technique merits further validation as the benefits for clinical practice as well as antifibrotic trial design would be numerous. KEY POINTS: • Magnetization transfer MRI and texture analysis of T2-weighted MR images can detect established bowel fibrosis in an animal model of gut fibrosis. • Texture entropy is able to identify and monitor bowel fibrosis progression in an inflammatory context and can assess the response to antifibrotic treatment. • A proof-of-concept study in five patients with Crohn's disease suggests that texture entropy can detect and grade fibrosis in human intestinal strictures.


Subject(s)
Crohn Disease , Humans , Mice , Animals , Crohn Disease/pathology , Constriction, Pathologic , Retrospective Studies , Magnetic Resonance Imaging/methods , Inflammation , Fibrosis
3.
Rheumatology (Oxford) ; 62(9): 3169-3178, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36661300

ABSTRACT

OBJECTIVE: Divergent therapeutic outcomes on different disease domains have been noted with IL-23 and IL-17A-blockade in PsA. Therefore, elucidating the role of RORγt, the master regulator of type 17 immune responses, is of potential therapeutic interest. To this end, RORγt inhibition was assessed in combined skin, joint and gut inflammation in vivo, using a PsA model. METHODS: We tested the efficacy of a RORγt antagonist in B10.RIII mice challenged with systemic overexpression of IL-23 by hydrodynamic injection of IL-23 enhanced episomal vector (IL-23 EEV). Clinical outcomes were evaluated by histopathology. Bone density and surface erosions were examined using micro-computed tomography. Cytokine production was measured in serum and by intracellular flow cytometry. Gene expression in PsA-related tissues was analysed by qPCR. RESULTS: RORγt-blockade significantly ameliorated psoriasis, peripheral arthritis and colitis development in IL-23 EEV mice (improvement of clinical scores and weight loss respectively by 91.8%, 58.2% and 7.0%, P < 0.001), in line with profound suppression of an enhanced type IL-17 immune signature in PsA-affected tissues. Moreover, inflammation-induced bone loss and bone erosions were reduced (P < 0.05 in calcaneus, P < 0.01 in tibia). Sustained IL-23 overexpression resulted in only mild signs of sacroiliitis. Gamma-delta (γδ)-T cells, the dominant source of T cell-derived IL-17A and IL-22, were expanded during IL-23 overexpression, and together with Th17 cells, clearly countered by RORγt inhibition (P < 0.001). CONCLUSION: RORγt-blockade shows therapeutic efficacy in a preclinical PsA model with protection towards extra-musculoskeletal manifestations, reflected by a clear attenuation of type 17 cytokine responses by γδ-T cells and Th17 cells.


Subject(s)
Arthritis, Experimental , Arthritis, Psoriatic , Mice , Animals , Interleukin-17/metabolism , Arthritis, Psoriatic/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , X-Ray Microtomography , Inflammation/pathology , Cytokines , Interleukin-23/metabolism
4.
Am J Pathol ; 193(4): 366-379, 2023 04.
Article in English | MEDLINE | ID: mdl-36642171

ABSTRACT

Primary sclerosing cholangitis (PSC) is an idiopathic chronic immune-mediated cholestatic liver disease characterized by fibro-inflammatory bile duct strictures, progressive hepatobiliary fibrosis, and gut-liver axis disruption. The pathophysiology of PSC remains insufficiently characterized, which hampers the development of effective therapies. Hepatic macrophages (MFs) such as Kupffer cells (KCs) are implicated in PSC pathogenesis, but their exact role is unclear. Using the latest markers to discriminate resident KCs (ResKCs) from their monocyte-derived counterparts (MoKCs), and two models of intrahepatic and extrahepatic cholestasis, respectively, this study showed that CLEC4F+TIM4+ ResKCs were depleted after chronic cholestatic liver injury. The infiltrating CLEC4F+TIM4- MoKCs were already enriched during the acute phase of PSC. Transcriptional profiling of hepatic MF subsets during early cholestatic injury indicated that ResKCs were indeed activated and that MoKCs expressed higher levels of pro-inflammatory and proliferative markers compared with those of ResKCs. As indicated in experiments with Clec4fDTR transgenic mice, conditional depletion of KCs, before and during early cholestasis induction, had no effect on the composition of the hepatic myeloid cell pool following injury progression and did not affect disease outcomes. Taken together, these results provide new insights into the heterogeneity of the MF pool during experimental PSC and evidence that depletion of resident and activated KCs during sclerosing cholangitis does not affect disease outcome in mice.


Subject(s)
Cholangitis, Sclerosing , Cholestasis , Mice , Animals , Cholangitis, Sclerosing/pathology , Kupffer Cells/pathology , Liver/pathology , Cholestasis/pathology
5.
BMC Biol ; 20(1): 151, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35761265

ABSTRACT

BACKGROUND: Colorectal cancer, one of the most common malignancies worldwide, is associated with a high mortality rate, mainly caused by metastasis. Comparative metagenome-wide association analyses of healthy individuals and cancer patients suggest a role for the human intestinal microbiota in tumor progression. However, the microbial molecules involved in host-microbe communication are largely unknown, with current studies mainly focusing on short-chain fatty acids and amino acid metabolites as potential mediators. Quorum sensing peptides are not yet considered in this context since their presence in vivo and their ability to affect host cells have not been reported so far. RESULTS: Here, we show that EntF*, a metabolite of the quorum sensing peptide EntF produced by Enterococcus faecium, is naturally present in mice bloodstream. Moreover, by using an orthotopic mouse model, we show that EntF* promotes colorectal cancer metastasis in vivo, with metastatic lesions in liver and lung tissues. In vitro tests suggest that EntF* regulates E-cadherin expression and consequently the epithelial-mesenchymal transition, via the CXCR4 receptor. In addition, alanine-scanning analysis indicates that the first, second, sixth, and tenth amino acid of EntF* are critical for epithelial-mesenchymal transition and tumor metastasis. CONCLUSION: Our work identifies a new class of molecules, quorum sensing peptides, as potential regulators of host-microbe interactions. We prove, for the first time, the presence of a selected quorum sensing peptide metabolite in a mouse model, and we demonstrate its effects on colorectal cancer metastasis. We believe that our work represents a starting point for future investigations on the role of microbiome in colorectal cancer metastasis and for the development of novel bio-therapeutics in other disease areas.


Subject(s)
Colorectal Neoplasms , Microbiota , Amino Acids , Animals , Humans , Mice , Microbiota/physiology , Peptides , Quorum Sensing/physiology
7.
Biology (Basel) ; 10(9)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34571764

ABSTRACT

Environmental hypoxia and hypoxia-induced signalling in the gut influence inflammatory bowel disease pathogenesis, however data is limited to colitis. Hence, we investigated the effect of environmental hypoxia and immune cell-specific deletion of oxygen sensor prolyl hydroxylase (PHD) 1 in a Crohn's like ileitis mouse model. Therefore, 5-week-old C57/BL6 TNF∆ARE/+ mice and wildtype (WT) littermates were housed in normoxia (21% O2) or hypoxia (8% O2) for 10 weeks. Systemic inflammation was assessed by haematology. Distal ileal hypoxia was evaluated by pimonidazole staining. The ileitis degree was scored on histology, characterized via qPCR and validated in haematopoietic Phd1-deficient TNF∆ARE/+ mice. Our results demonstrated that hypoxia did not impact body weight evolution in WT and TNF∆ARE/+ mice. Hypoxia increased red blood cell count, haemoglobin, haematocrit and increased pimonidazole intensity in the ileum. Interestingly, hypoxia evoked an increase in circulatory monocytes, ileal mononuclear phagocytes and proinflammatory cytokine expression in WT mice. Despite these alterations, no histological or ileal gene expression differences could be identified between TNF∆ARE/+ mice housed in hypoxia versus normoxia nor between haematopoietic Phd1-deficient TNF∆ARE/+ and their WT counterparts. Therefore, we demonstrated for the first time that long-term environmental hypoxia or haematopoietic Phd1-deletion does not impact experimental ileitis development.

8.
Nat Rev Gastroenterol Hepatol ; 14(10): 596-611, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28853446

ABSTRACT

Tissue hypoxia occurs when local oxygen demand exceeds oxygen supply. In chronic inflammatory conditions such as IBD, the increased oxygen demand by resident and gut-infiltrating immune cells coupled with vascular dysfunction brings about a marked reduction in mucosal oxygen concentrations. To counter the hypoxic challenge and ensure their survival, mucosal cells induce adaptive responses, including the activation of hypoxia-inducible factors (HIFs) and modulation of nuclear factor-κB (NF-κB). Both pathways are tightly regulated by oxygen-sensitive prolyl hydroxylases (PHDs), which therefore represent promising therapeutic targets for IBD. In this Review, we discuss the involvement of mucosal hypoxia and hypoxia-induced signalling in the pathogenesis of IBD and elaborate in detail on the role of HIFs, NF-κB and PHDs in different cell types during intestinal inflammation. We also provide an update on the development of PHD inhibitors and discuss their therapeutic potential in IBD.


Subject(s)
Hypoxia/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/cytology , NF-kappa B/metabolism , Signal Transduction
9.
Gastroenterology ; 153(4): 1054-1067, 2017 10.
Article in English | MEDLINE | ID: mdl-28642198

ABSTRACT

BACKGROUND: Intestinal fibrosis resulting in (sub)obstruction is a common complication of Crohn's disease (CD). Rho kinases (ROCKs) play multiple roles in TGFß-induced myofibroblast activation that could be therapeutic targets. Because systemic ROCK inhibition causes cardiovascular side effects, we evaluated the effects of a locally acting ROCK inhibitor (AMA0825) on intestinal fibrosis. METHODS: Fibrosis was assessed in mouse models using dextran sulfate sodium (DSS) and adoptive T-cell transfer. The in vitro and ex vivo effects of AMA0825 were studied in different cell types and in CD biopsy cultures. RESULTS: ROCK is expressed in fibroblastic, epithelial, endothelial, and muscle cells of the human intestinal tract and is activated in inflamed and fibrotic tissue. Prophylactic treatment with AMA0825 inhibited myofibroblast accumulation, expression of pro-fibrotic factors, and accumulation of fibrotic tissue without affecting clinical disease activity and histologic inflammation in 2 models of fibrosis. ROCK inhibition reversed established fibrosis in a chronic DSS model and impeded ex vivo pro-fibrotic protein secretion from stenotic CD biopsies. AMA0825 reduced TGFß1-induced activation of myocardin-related transcription factor (MRTF) and p38 mitogen-activated protein kinase (MAPK), down-regulating matrix metalloproteinases, collagen, and IL6 secretion from fibroblasts. In these cells, ROCK inhibition potentiated autophagy, which was required for the observed reduction in collagen and IL6 production. AMA0825 did not affect pro-inflammatory cytokine secretion from other ROCK-positive cell types, corroborating the selective in vivo effect on fibrosis. CONCLUSIONS: Local ROCK inhibition prevents and reverses intestinal fibrosis by diminishing MRTF and p38 MAPK activation and increasing autophagy in fibroblasts. Overall, our results show that local ROCK inhibition is promising for counteracting fibrosis as an add-on therapy for CD.


Subject(s)
Ileum/drug effects , Inflammatory Bowel Diseases/prevention & control , Intestinal Obstruction/prevention & control , Myofibroblasts/drug effects , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Adoptive Transfer , Animals , Autophagy/drug effects , Case-Control Studies , Collagen/metabolism , Dextran Sulfate , Disease Models, Animal , Enzyme Activation , Fibrosis , Humans , Ileum/enzymology , Ileum/immunology , Ileum/pathology , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/enzymology , Inflammatory Bowel Diseases/pathology , Interleukin-6/metabolism , Intestinal Obstruction/chemically induced , Intestinal Obstruction/enzymology , Intestinal Obstruction/pathology , Male , Matrix Metalloproteinases/metabolism , Mice, Inbred C57BL , Myofibroblasts/enzymology , Myofibroblasts/immunology , Myofibroblasts/pathology , Signal Transduction/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Time Factors , Tissue Culture Techniques , p38 Mitogen-Activated Protein Kinases/metabolism , rho-Associated Kinases/metabolism
10.
Histochem Cell Biol ; 148(1): 85-93, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28265783

ABSTRACT

Colonic adenocarcinoma-derived Caco-2 and T84 epithelial cell lines are frequently used as in vitro model systems of functional epithelial barriers. Both are utilised interchangeably despite evidence that differentiated Caco-2 cells are more reminiscent of small intestinal enterocytes than of colonocytes, whereas differentiated T84 cells are less well characterised. The aim of this study was, therefore, to further characterise and compare differentiated Caco-2 and T84 cells. The objectives were to (1) compare the brush border morphology, (2) measure the expression of enterocyte- and colonocyte-specific genes and (3) compare their response to butyrate, which is dependent on the monocarboxylate transporter 1 (MCT1), an apical protein expressed primarily in colonocytes. T84 microvilli were significantly shorter than those of Caco-2 cells, which is a characteristic difference between small intestinal enterocytes and colonocytes. Also, enterocyte-associated brush border enzymes expressed in differentiated Caco-2 cells were not increased during T84 maturation, whereas colonic markers such as MCT1 were more abundant in differentiated T84 cells compared to differentiated Caco-2 cells. Consequently, T84 cells displayed a dose-responsive improvement of barrier function towards butyrate, which was absent in Caco-2 cells. On the other hand, differences in epithelial toll-like receptor expression between Caco-2 and T84 monolayers did not result in a corresponding differential functional response. We conclude that differentiated Caco-2 and T84 cells have distinct morphological, biochemical and functional characteristics, suggesting that T84 cells do not acquire the biochemical signature of mature small intestinal enterocytes like Caco-2 cells, but retain much of their original colonic characteristics throughout differentiation. These findings can help investigators select the appropriate intestinal epithelial cell line for specific in vitro research purposes.


Subject(s)
Colon/pathology , Models, Biological , Animals , Caco-2 Cells , Humans , Tumor Cells, Cultured
11.
Lab Invest ; 97(5): 519-529, 2017 05.
Article in English | MEDLINE | ID: mdl-28165466

ABSTRACT

Bile acids regulate the expression of intestinal bile acid transporters and are natural ligands for nuclear receptors controlling inflammation. Accumulating evidence suggests that signaling through these receptors is impaired in inflammatory bowel disease. We investigated whether tauroursodeoxycholic acid (TUDCA), a secondary bile acid with cytoprotective properties, regulates ileal nuclear receptor and bile acid transporter expression and assessed its therapeutic potential in an experimental model of Crohn's disease (CD). Gene expression of the nuclear receptors farnesoid X receptor, pregnane X receptor and vitamin D receptor and the bile acid transporters apical sodium-dependent bile acid transporter and organic solute transporter α and ß was analyzed in Caco-2 cell monolayers exposed to tumor necrosis factor (TNF)α, in ileal tissue of TNFΔARE/WT mice and in inflamed ileal biopsies from CD patients by quantitative real-time polymerase chain reaction. TNFΔARE/WT mice and wild-type littermates were treated with TUDCA or placebo for 11 weeks and ileal histopathology and expression of the aforementioned genes were determined. Exposing Caco-2 cell monolayers to TNFα impaired the mRNA expression of nuclear receptors and bile acid transporters, whereas co-incubation with TUDCA antagonized their downregulation. TNFΔARE/WT mice displayed altered ileal bile acid homeostasis that mimicked the situation in human CD ileitis. Administration of TUDCA attenuated ileitis and alleviated the downregulation of nuclear receptors and bile acid transporters in these mice. These results show that TUDCA protects bile acid homeostasis under inflammatory conditions and suppresses CD-like ileitis. Together with previous observations showing similar efficacy in experimental colitis, we conclude that TUDCA could be a promising therapeutic agent for inflammatory bowel disease, warranting a clinical trial.


Subject(s)
Crohn Disease/metabolism , Down-Regulation/drug effects , Homeostasis/drug effects , Ileitis/metabolism , Taurochenodeoxycholic Acid/pharmacology , Adult , Animals , Bile Acids and Salts/metabolism , Caco-2 Cells , Carrier Proteins/metabolism , Disease Models, Animal , Female , Humans , Ileum/drug effects , Ileum/pathology , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Receptors, Cytoplasmic and Nuclear/metabolism , Young Adult
12.
Appl Environ Microbiol ; 83(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28115375

ABSTRACT

The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila, bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD.IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we studied the alterations in the fecal microbial abundance in colitic mice following the administration of secondary bile acids. Our results show that secondary bile acids reduce the severity of colitis and ameliorate colitis-associated fecal dysbiosis at the phylum level. This study indicates that secondary bile acids might act as a safe and effective drug for inflammatory bowel disease.


Subject(s)
Dysbiosis/drug therapy , Gastrointestinal Microbiome/drug effects , Inflammatory Bowel Diseases/drug therapy , Taurochenodeoxycholic Acid/therapeutic use , Ursodeoxycholic Acid/analogs & derivatives , Ursodeoxycholic Acid/therapeutic use , Animals , Bacteroides/drug effects , Colon/microbiology , Dextran Sulfate/administration & dosage , Disease Models, Animal , Feces/microbiology , Firmicutes/drug effects , Humans , Mice , Taurine/chemistry , Taurochenodeoxycholic Acid/administration & dosage , Ursodeoxycholic Acid/administration & dosage , Ursodeoxycholic Acid/chemistry
13.
J Pathol ; 241(4): 547-558, 2017 03.
Article in English | MEDLINE | ID: mdl-27981571

ABSTRACT

Prolyl hydroxylase domain-containing proteins (PHDs) regulate the adaptation of cells to hypoxia. Pan-hydroxylase inhibition is protective in experimental colitis, in which PHD1 plays a prominent role. However, it is currently unknown how PHD1 targeting regulates this protection and which cell type(s) are involved. Here, we demonstrated that Phd1 deletion in endothelial and haematopoietic cells (Phd1f/f Tie2:cre) protected mice from dextran sulphate sodium (DSS)-induced colitis, with reduced epithelial erosions, immune cell infiltration, and colonic microvascular dysfunction, whereas the response of Phd2f/+ Tie2:cre and Phd3f/f Tie2:cre mice to DSS was similar to that of their littermate controls. Using bone marrow chimeras and cell-specific cre mice, we demonstrated that ablation of Phd1 in haematopoietic cells but not in endothelial cells was both necessary and sufficient to inhibit experimental colitis. This effect relied, at least in part, on skewing of Phd1-deficient bone marrow-derived macrophages towards an anti-inflammatory M2 phenotype. These cells showed an attenuated nuclear factor-κB-dependent response to lipopolysaccharide (LPS), which in turn diminished endothelial chemokine expression. In addition, Phd1 deficiency in dendritic cells significantly reduced interleukin-1ß production in response to LPS. Taken together, our results further support the development of selective PHD1 inhibitors for ulcerative colitis, and identify haematopoietic cells as their primary target. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Colitis, Ulcerative/drug therapy , Macrophages/metabolism , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Animals , Bone Marrow/drug effects , Bone Marrow/immunology , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Colon/drug effects , Colon/pathology , Dendritic Cells/drug effects , Dendritic Cells/pathology , Endothelial Cells/drug effects , Endothelial Cells/pathology , Female , Gene Deletion , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/metabolism , Procollagen-Proline Dioxygenase/deficiency , Procollagen-Proline Dioxygenase/genetics
14.
PLoS One ; 9(10): e110015, 2014.
Article in English | MEDLINE | ID: mdl-25310588

ABSTRACT

The Ly49E NK receptor is a unique inhibitory receptor, presenting with a high degree of conservation among mouse strains and expression on both NK cells and intraepithelial-localised T cells. Amongst intraepithelial-localised T cells, the Ly49E receptor is abundantly expressed on CD8αα-expressing innate-like intestinal intraepithelial lymphocytes (iIELs), which contribute to front-line defense at the mucosal barrier. Inflammatory bowel diseases (IBDs), encompassing Crohn's disease and ulcerative colitis, have previously been suggested to have an autoreactive origin and to evolve from a dysbalance between regulatory and effector functions in the intestinal immune system. Here, we made use of Ly49E-deficient mice to characterize the role of Ly49E receptor expression on CD8αα-expressing iIELs in the development and progression of IBD. For this purpose we used the dextran sodium sulphate (DSS)- and trinitrobenzenesulfonic-acid (TNBS)-induced colitis models, and the TNFΔARE ileitis model. We show that Ly49E is expressed on a high proportion of CD8αα-positive iIELs, with higher expression in the colon as compared to the small intestine. However, Ly49E expression on small intestinal and colonic iIELs does not influence the development or progression of inflammatory bowel diseases.


Subject(s)
CD8 Antigens/metabolism , Disease Progression , Epithelial Cells/pathology , Inflammatory Bowel Diseases/pathology , Intestines/pathology , Lymphocytes/pathology , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Animals , Cell Count , Colitis/metabolism , Colitis/pathology , Colon/metabolism , Colon/pathology , Dextran Sulfate , Ileitis/metabolism , Ileitis/pathology , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/metabolism , Mice, Inbred C57BL , Mice, Knockout , Receptors, Natural Killer Cell/metabolism , Trinitrobenzenesulfonic Acid , Tumor Necrosis Factor-alpha/metabolism
15.
J Inflamm (Lond) ; 10(1): 36, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24257430

ABSTRACT

BACKGROUND: Inhibition of prolyl hydroxylases (PHDs) leads to the induction of a transcriptional program that, in the gut, promotes intestinal epithelial cell survival. PHD inhibitors have recently been suggested as a promising alternative treatment for inflammatory bowel disease (IBD). In this study, we explored the colonic mucosal expression of the different PHD-isoforms (PHD1, 2 and 3) in order to identify the key isoform(s) involved in the pathogenesis of IBD. METHODS: The mRNA expression of inflammatory cytokines (IL-8 and TNF-α), an apoptosis marker (caspase 3) and PHD1, 2 and 3 was analysed in biopsies of IBD patients (UC and CD), patients with infectious colitis and healthy controls using qRT-PCR. PHD protein levels were evaluated using western blot. Cellular localization of PHD 1, 2 and 3 was determined by immunohistochemistry. RESULTS: PHD1 was significantly up-regulated in IBD patients, both at the mRNA (UC: p < 0.0001 and CD: p < 0.05) and at the protein level (UC: p < 0.05 and CD: p < 0.05), and showed a very good correlation with the expression of the inflammatory cytokines IL-8 and TNF-α and the apoptosis marker caspase 3. Colonic mucosal PHD2 mRNA and protein expressions were not altered in IBD. PHD3 expression was increased in inflamed biopsies from UC patients (p < 0.0001), but only at the mRNA level. PHD1 and PHD2 expression was found both in the colonic lamina propria and the epithelium while PHD3 was mainly located in the endothelium of blood vessels. CONCLUSIONS: In this exploratory expression analysis, PHD1 comes forward as the primary therapeutic target for UC and, to a lesser extent, for (colonic) CD.

SELECTION OF CITATIONS
SEARCH DETAIL
...