Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vox Sang ; 119(3): 219-231, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37889847

ABSTRACT

BACKGROUND AND OBJECTIVES: Although screening of donated blood for syphilis is almost universally applied, its cost-effectiveness is questioned because of the low prevalence of transfusion-transmitted syphilis and a widespread belief that the syphilis-causing bacterium Treponema pallidum is very vulnerable to cold storage. Since the latter claim is not yet supported by a systematic review, we investigated whether syphilis can be transmitted via transfusion following prolonged (cold or room temperature) storage of blood products. MATERIALS AND METHODS: MEDLINE, PMC and NCBI bookshelf (PubMed interface), Cochrane Library, Embase, Web of Science and CINAHL were searched up to 17 January 2023. RESULTS: Nine experimental animal studies and one observational human study were included. Meta-analysis showed that storing artificially infected human (six studies; risk ratio [RR] = 0.37, 95% confidence interval [CI]: 0.22-0.64, p = 0.0003) or rabbit (two studies; RR = 0.08, 95% CI: 0.01 to 0.55, p = 0.01) blood for more than 72 h before intratesticular injection significantly decreased the number of recipient animals that develop syphilis. Nonetheless, the possibility of syphilis transmission remained for up to 7 days. Differences could not be found for rabbit plasma (p = 0.60) or naturally infected rabbit blood (p = 0.28). There was limited evidence from one study in favour of the storage of artificially infected human platelets for over 72 h at cold temperatures (RR = 0.13, 95% CI: 0.03-0.52, p = 0.004) but not at room temperature (p = 0.12). CONCLUSION: Even though the infectivity of T. pallidum-spiked blood may decrease after 72 h of cold storage, the possibility for transfusion-transmitted syphilis may remain for several days after. The evidence is very uncertain, and conclusions are hindered by a lack of sufficiently powered studies and studies in humans. In addition, T. pallidum concentrations used in animal studies may be unrealistically high.


Subject(s)
Syphilis , Animals , Humans , Rabbits , Syphilis/epidemiology , Blood Transfusion , Treponema pallidum , Blood Platelets , Plasma
2.
Biomolecules ; 13(4)2023 04 14.
Article in English | MEDLINE | ID: mdl-37189424

ABSTRACT

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are currently used following the Comprehensive in vitro Proarrhythmic Assay (CiPA) initiative and subsequent recommendations in the International Council for Harmonization (ICH) guidelines S7B and E14 Q&A, to detect drug-induced cardiotoxicity. Monocultures of hiPSC-CMs are immature compared to adult ventricular cardiomyocytes and might lack the native heterogeneous nature. We investigated whether hiPSC-CMs, treated to enhance structural maturity, are superior in detecting drug-induced changes in electrophysiology and contraction. This was achieved by comparing hiPSC-CMs cultured in 2D monolayers on the current standard (fibronectin matrix, FM), to monolayers on a coating known to promote structural maturity (CELLvo™ Matrix Plus, MM). Functional assessment of electrophysiology and contractility was made using a high-throughput screening approach involving the use of both voltage-sensitive fluorescent dyes for electrophysiology and video technology for contractility. Using 11 reference drugs, the response of the monolayer of hiPSC-CMs was comparable in the two experimental settings (FM and MM). The data showed no functionally relevant differences in electrophysiology between hiPSC-CMs in standard FM and MM, while contractility read-outs indicated an altered amplitude of contraction but not changes in time course. RNA profiling for cardiac proteins shows similarity of the RNA expression across the two forms of 2D culture, suggesting that cell-to-matrix adhesion differences may explain account for differences in contraction amplitude. The results support the view that hiPSC-CMs in both 2D monolayer FM and MM that promote structural maturity are equally effective in detecting drug-induced electrophysiological effects in functional safety studies.


Subject(s)
Cardiotoxicity , Induced Pluripotent Stem Cells , Humans , Cardiotoxicity/diagnosis , Cells, Cultured , High-Throughput Screening Assays , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism
3.
Sci Adv ; 8(37): eabn1731, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36112676

ABSTRACT

Voltage-gated K+ (Kv) channels mediate the flow of K+ across the cell membrane by regulating the conductive state of their activation gate (AG). Several Kv channels display slow C-type inactivation, a process whereby their selectivity filter (SF) becomes less or nonconductive. It has been proposed that, in the fast inactivation-removed Shaker-IR channel, the W434F mutation epitomizes the C-type inactivated state because it functionally accelerates this process. By introducing another pore mutation that prevents AG closure, P475D, we found a way to record ionic currents of the Shaker-IR-W434F-P475D mutant at hyperpolarized membrane potentials as the W434F-mutant SF recovers from its inactivated state. This W434F conductive state lost its high K+ over Na+ selectivity, and even NMDG+ can permeate, features not observed in a wild-type SF. This indicates that, at least during recovery from inactivation, the W434F-mutant SF transitions to a widened and noncationic specific conformation.

4.
Biol Open ; 11(2)2022 02 15.
Article in English | MEDLINE | ID: mdl-35195246

ABSTRACT

Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) offer an attractive platform for cardiovascular research. Patient-specific iPSC-CMs are very useful for studying disease development, and bear potential for disease diagnostics, prognosis evaluation and development of personalized treatment. Several monolayer-based serum-free protocols have been described for the differentiation of iPSCs into cardiomyocytes, but data on their performance are scarce. In this study, we evaluated two protocols that are based on temporal modulation of the Wnt/ß-catenin pathway for iPSC-CM differentiation from four iPSC lines, including two control individuals and two patients carrying an SCN5A mutation. The SCN5A gene encodes the cardiac voltage-gated sodium channel (Nav1.5) and loss-of-function mutations can cause the cardiac arrhythmia Brugada syndrome. We performed molecular characterization of the obtained iPSC-CMs by immunostaining for cardiac specific markers and by expression analysis of selected cardiac structural and ionic channel protein-encoding genes with qPCR. We also investigated cell growth morphology, contractility and survival of the iPSC-CMs after dissociation. Finally, we performed electrophysiological characterization of the cells, focusing on the action potential (AP) and calcium transient (CT) characteristics using patch-clamping and optical imaging, respectively. Based on our comprehensive morpho-functional analysis, we concluded that both tested protocols result in a high percentage of contracting CMs. Moreover, they showed acceptable survival and cell quality after dissociation (>50% of cells with a smooth cell membrane, possible to seal during patch-clamping). Both protocols generated cells presenting with typical iPSC-CM AP and CT characteristics, although one protocol (that involves sequential addition of CHIR99021 and Wnt-C59) rendered iPSC-CMs, which were more accessible for patch-clamp and calcium transient experiments and showed an expression pattern of cardiac-specific markers more similar to this observed in human heart left ventricle samples.


Subject(s)
Induced Pluripotent Stem Cells , Action Potentials , Cell Differentiation , Electrophysiological Phenomena , Humans , Myocytes, Cardiac
5.
Channels (Austin) ; 15(1): 239-252, 2021 12.
Article in English | MEDLINE | ID: mdl-33465001

ABSTRACT

Human-induced pluripotent stem cell (hiPSC) and stem cell (hSC) derived cardiomyocytes (CM) are gaining popularity as in vitro model for cardiology and pharmacology studies. A remaining flaw of these cells, as shown by single-cell electrophysiological characterization, is a more depolarized resting membrane potential (RMP) compared to native CM. Most reports attribute this to a lower expression of the Kir2.1 potassium channel that generates the IK1 current. However, most RMP recordings are obtained from isolated hSC/hiPSC-CMs whereas in a more native setting these cells are interconnected with neighboring cells by connexin-based gap junctions, forming a syncytium. Hereby, these cells are electrically connected and the total pool of IK1 increases. Therefore, the input resistance (Ri) of interconnected cells is lower than that of isolated cells. During patch clamp experiments pipettes need to be well attached or sealed to the cell, which is reflected in the seal resistance (Rs), because a nonspecific ionic current can leak through this pipette-cell contact or seal and balance out small currents within the cell such as IK1. By recording the action potential of isolated hSC-CMs and that of hSC-CMs cultured in small monolayers, we show that the RMP of hSC-CMs in monolayer is approximately -20 mV more hyperpolarized compared to isolated cells. Accordingly, adding carbenoxolone, a connexin channel blocker, isolates the cell that is patch clamped from its neighboring cells of the monolayer and depolarizes the RMP. The presented data show that the recorded RMP of hSC-CMs in a syncytium is more negative than that determined from isolated hSC/hiPSC-CMs, most likely because the active pool of Kir2.1 channels increased.


Subject(s)
Myocytes, Cardiac , Giant Cells , Membrane Potentials , Patch-Clamp Techniques , Potassium
6.
Front Pharmacol ; 11: 735, 2020.
Article in English | MEDLINE | ID: mdl-32499709

ABSTRACT

In the Nav channel family the lipophilic drugs/toxins binding sites and the presence of fenestrations in the channel pore wall are well defined and categorized. No such classification exists in the much larger Kv channel family, although certain lipophilic compounds seem to deviate from binding to well-known hydrophilic binding sites. By mapping different compound binding sites onto 3D structures of Kv channels, there appear to be three distinct lipid-exposed binding sites preserved in Kv channels: the front and back side of the pore domain, and S2-S3/S3-S4 clefts. One or a combination of these sites is most likely the orthologous equivalent of neurotoxin site 5 in Nav channels. This review describes the different lipophilic binding sites and location of pore wall fenestrations within the Kv channel family and compares it to the knowledge of Nav channels.

7.
Front Pharmacol ; 10: 1374, 2019.
Article in English | MEDLINE | ID: mdl-31920633

ABSTRACT

The cardiac Nav1.5 mediated sodium current (INa) generates the upstroke of the action potential in atrial and ventricular myocytes. Drugs that modulate this current can therefore be antiarrhythmic or proarrhythmic, which requires preclinical evaluation of their potential drug-induced inhibition or modulation of Nav1.5. Since Nav1.5 assembles with, and is modulated by, the auxiliary ß1-subunit, this subunit can also affect the channel's pharmacological response. To investigate this, the effect of known Nav1.5 inhibitors was compared between COS-7 cells expressing Nav1.5 or Nav1.5+ß1 using whole-cell voltage clamp experiments. For the open state class Ia blockers ajmaline and quinidine, and class Ic drug flecainide, the affinity did not differ between both models. For class Ib drugs phenytoin and lidocaine, which are inactivated state blockers, the affinity decreased more than a twofold when ß1 was present. Thus, ß1 did not influence the affinity for the class Ia and Ic compounds but it did so for the class Ib drugs. Human stem cell-derived cardiomyocytes (hSC-CMs) are a promising translational cell source for in vitro models that express a representative repertoire of channels and auxiliary proteins, including ß1. Therefore, we subsequently evaluated the same drugs for their response on the INa in hSC-CMs. Consequently, it was expected and confirmed that the drug response of INa in hSC-CMs compares best to INa expressed by Nav1.5+ß1.

SELECTION OF CITATIONS
SEARCH DETAIL
...