Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nat Immunol ; 24(3): 474-486, 2023 03.
Article in English | MEDLINE | ID: mdl-36703005

ABSTRACT

The cross-talk between thymocytes and thymic stromal cells is fundamental for T cell development. In humans, intrathymic development of dendritic cells (DCs) is evident but its physiological significance is unknown. Here we showed that DC-biased precursors depended on the expression of the transcription factor IRF8 to express the membrane-bound precursor form of the cytokine TNF (tmTNF) to promote differentiation of thymus seeding hematopoietic progenitors into T-lineage specified precursors through activation of the TNF receptor (TNFR)-2 instead of TNFR1. In vitro recapitulation of TNFR2 signaling by providing low-density tmTNF or a selective TNFR2 agonist enhanced the generation of human T cell precursors. Our study shows that, in addition to mediating thymocyte selection and maturation, DCs function as hematopoietic stromal support for the early stages of human T cell development and provide proof of concept that selective targeting of TNFR2 can enhance the in vitro generation of T cell precursors for clinical application.


Subject(s)
Dendritic Cells , Receptors, Tumor Necrosis Factor, Type II , Humans , Cell Differentiation , Cell Lineage , Interferon Regulatory Factors/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Thymus Gland/metabolism , Tumor Necrosis Factors/metabolism
2.
Methods Mol Biol ; 2580: 315-333, 2023.
Article in English | MEDLINE | ID: mdl-36374467

ABSTRACT

During their development, human T cells undergo similar genomic changes and pass through the same developmental checkpoints as developing thymocytes in the mouse. The difference between both species, however, is that some of these developmental stages are characterized by different phenotypic markers, and as a result, evidence emerges that the molecular regulation of human T cell development subtly differs from the mouse (Taghon et al., Curr Top Microbiol Immunol 360:75-97, 2021; Haddad et al., Immunity 24:217-230, 2006; Hao et al., Blood 111:1318-1326, 2008; Taghon and Rothenberg, Semin Immunopathol 30:383-398, 2008). In this chapter, we describe in detail how the different stages of human T cell development can be characterized and isolated using specific surface markers.


Subject(s)
Thymocytes , Thymus Gland , Humans , Mice , Animals , Cell Differentiation
3.
Brain Commun ; 4(6): fcac306, 2022.
Article in English | MEDLINE | ID: mdl-36523267

ABSTRACT

The involvement of the complement pathway in Guillain-Barré syndrome pathogenesis has been demonstrated in both patient biosamples and animal models. One proposed mechanism is that anti-ganglioside antibodies mediate neural membrane injury through the activation of complement and the formation of membrane attack complex pores, thereby allowing the uncontrolled influx of ions, including calcium, intracellularly. Calcium influx activates the calcium-dependent protease calpain, leading to the cleavage of neural cytoskeletal and transmembrane proteins and contributing to subsequent functional failure. Complement inhibition has been demonstrated to provide effective protection from injury in anti-ganglioside antibody-mediated mouse models of axonal variants of Guillain-Barré syndrome; however, the role of complement in the pathogenesis of demyelinating variants has yet to be established. Thus, it is currently unknown whether complement inhibition would be an effective therapeutic for Guillain-Barré syndrome patients with injuries to the Schwann cell membrane. To address this, we recently developed a mouse model whereby the Schwann cell membrane was selectively targeted with an anti-GM1 antibody resulting in significant disruption to the axo-glial junction and cytoplasmic paranodal loops, presenting as conduction block. Herein, we utilize this Schwann cell nodal membrane injury model to determine the relevance of inhibiting complement activation. We addressed the early complement component C2 as the therapeutic target within the complement cascade by using the anti-C2 humanized monoclonal antibody, ARGX-117. This anti-C2 antibody blocks the formation of C3 convertase, specifically inhibiting the classical and lectin complement pathways and preventing the production of downstream harmful anaphylatoxins (C3a and C5a) and membrane attack complexes. Here, we demonstrate that C2 inhibition significantly attenuates injury to paranodal proteins at the node of Ranvier and improves respiratory function in ex vivo and in vivo Schwann cell nodal membrane injury models. In parallel studies, C2 inhibition also protects axonal integrity in our well-established model of acute motor axonal neuropathy mediated by both mouse and human anti-GM1 antibodies. These data demonstrate that complement inhibition prevents injury in a Schwann cell nodal membrane injury model, which is representative of neuropathies associated with anti-GM1 antibodies, including Guillain-Barré syndrome and multifocal motor neuropathy. This outcome suggests that both the motor axonal and demyelinating variants of Guillain-Barré syndrome should be included in future complement inhibition clinical trials.

4.
Article in English | MEDLINE | ID: mdl-34759020

ABSTRACT

BACKGROUND AND OBJECTIVES: To determine the role of complement in the disease pathology of multifocal motor neuropathy (MMN), we investigated complement activation, and inhibition, on binding of MMN patient-derived immunoglobulin M (IgM) antibodies in an induced pluripotent stem cell (iPSC)-derived motor neuron (MN) model for MMN. METHODS: iPSC-derived MNs were characterized for the expression of complement receptors and membrane-bound regulators, for the binding of circulating IgM anti-GM1 from patients with MMN, and for subsequent fixation of C4 and C3 on incubation with fresh serum. The potency of ARGX-117, a novel inhibitory monoclonal antibody targeting C2, to inhibit fixation of complement was assessed. RESULTS: iPSC-derived MNs moderately express the complement regulatory proteins CD46 and CD55 and strongly expressed CD59. Furthermore, MNs express C3aR, C5aR, and complement receptor 1. IgM anti-GM1 antibodies in serum from patients with MMN bind to MNs and induce C3 and C4 fixation on incubation with fresh serum. ARGX-117 inhibits complement activation downstream of C4 induced by patient-derived anti-GM1 antibodies bound to MNs. DISCUSSION: Binding of IgM antibodies from patients with MMN to iPSC-derived MNs induces complement activation. By expressing complement regulatory proteins, particularly CD59, MNs are protected against complement-mediated lysis. Yet, because of expressing C3aR, the function of these cells may be affected by complement activation upstream of membrane attack complex formation. ARGX-117 inhibits complement activation upstream of C3 in this disease model for MMN and therefore represents an intervention strategy to prevent harmful effects of complement in MMN.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Complement Activation/immunology , Complement C2/drug effects , Motor Neurons , Polyneuropathies/drug therapy , Polyneuropathies/immunology , Cells, Cultured , Humans , Immunoglobulin M , Induced Pluripotent Stem Cells
5.
J Allergy Clin Immunol ; 147(4): 1420-1429.e7, 2021 04.
Article in English | MEDLINE | ID: mdl-32926878

ABSTRACT

BACKGROUND: Activation of the classical and lectin pathway of complement may contribute to tissue damage and organ dysfunction of antibody-mediated diseases and ischemia-reperfusion conditions. Complement factors are being considered as targets for therapeutic intervention. OBJECTIVE: We sought to characterize ARGX-117, a humanized inhibitory monoclonal antibody against complement C2. METHODS: The mode-of-action and binding characteristics of ARGX-117 were investigated in detail. Furthermore, its efficacy was analyzed in in vitro complement cytotoxicity assays. Finally, a pharmacokinetic/pharmacodynamic study was conducted in cynomolgus monkeys. RESULTS: Through binding to the Sushi-2 domain of C2, ARGX-117 prevents the formation of the C3 proconvertase and inhibits classical and lectin pathway activation upstream of C3 activation. As ARGX-117 does not inhibit the alternative pathway, it is expected not to affect the antimicrobial activity of this complement pathway. ARGX-117 prevents complement-mediated cytotoxicity in in vitro models for autoimmune hemolytic anemia and antibody-mediated rejection of organ transplants. ARGX-117 exhibits pH- and calcium-dependent target binding and is Fc-engineered to increase affinity at acidic pH to the neonatal Fc receptor, and to reduce effector functions. In cynomolgus monkeys, ARGX-117 dose-dependently reduces free C2 levels and classical pathway activity. A 2-dose regimen of 80 and 20 mg/kg separated by a week, resulted in profound reduction of classical pathway activity lasting for at least 7 weeks. CONCLUSIONS: ARGX-117 is a promising new complement inhibitor that is uniquely positioned to target both the classical and lectin pathways while leaving the alternative pathway intact.


Subject(s)
Antibodies, Monoclonal/pharmacology , Complement C2/antagonists & inhibitors , Complement Inactivating Agents/pharmacology , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/pharmacokinetics , Calcium , Complement Activation/drug effects , Complement C2/analysis , Complement C2/metabolism , Complement Inactivating Agents/blood , Complement Inactivating Agents/pharmacokinetics , Epitope Mapping , Female , Humans , Hydrogen-Ion Concentration , Macaca fascicularis , Male
6.
Front Cell Dev Biol ; 8: 599472, 2020.
Article in English | MEDLINE | ID: mdl-33251223

ABSTRACT

Transcriptional control of hematopoiesis involves complex regulatory networks and functional perturbations in one of these components often results in malignancies. Loss-of-function mutations in PHF6, encoding a presumed epigenetic regulator, have been primarily described in T cell acute lymphoblastic leukemia (T-ALL) and the first insights into its function in normal hematopoiesis only recently emerged from mouse modeling experiments. Here, we investigated the role of PHF6 in human blood cell development by performing knockdown studies in cord blood and thymus-derived hematopoietic precursors to evaluate the impact on lineage differentiation in well-established in vitro models. Our findings reveal that PHF6 levels differentially impact the differentiation of human hematopoietic progenitor cells into various blood cell lineages, with prominent effects on lymphoid and erythroid differentiation. We show that loss of PHF6 results in accelerated human T cell development through reduced expression of NOTCH1 and its downstream target genes. This functional interaction in developing thymocytes was confirmed in vivo using a phf6-deficient zebrafish model that also displayed accelerated developmental kinetics upon reduced phf6 or notch1 activation. In summary, our work reveals that appropriate control of PHF6 expression is important for normal human hematopoiesis and provides clues towards the role of PHF6 in T-ALL development.

7.
Nat Commun ; 11(1): 4545, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32917858

ABSTRACT

TGF-ß1, ß2 and ß3 bind a common receptor to exert vastly diverse effects in cancer, supporting either tumor progression by favoring metastases and inhibiting anti-tumor immunity, or tumor suppression by inhibiting malignant cell proliferation. Global TGF-ß inhibition thus bears the risk of undesired tumor-promoting effects. We show that selective blockade of TGF-ß1 production by Tregs with antibodies against GARP:TGF-ß1 complexes induces regressions of mouse tumors otherwise resistant to anti-PD-1 immunotherapy. Effects of combined GARP:TGF-ß1/PD-1 blockade are immune-mediated, do not require FcγR-dependent functions and increase effector functions of anti-tumor CD8+ T cells without augmenting immune cell infiltration or depleting Tregs within tumors. We find GARP-expressing Tregs and evidence that they produce TGF-ß1 in one third of human melanoma metastases. Our results suggest that anti-GARP:TGF-ß1 mAbs, by selectively blocking a single TGF-ß isoform emanating from a restricted cellular source exerting tumor-promoting activity, may overcome resistance to PD-1/PD-L1 blockade in patients with cancer.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Drug Resistance, Neoplasm/drug effects , Membrane Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Transforming Growth Factor beta1/antagonists & inhibitors , Animals , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor/transplantation , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/immunology , HEK293 Cells , Humans , Membrane Proteins/metabolism , Mice , Neoplasms/immunology , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta1/metabolism
8.
Nat Commun ; 7: 11171, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27048872

ABSTRACT

The gradual reprogramming of haematopoietic precursors into the T-cell fate is characterized by at least two sequential developmental stages. Following Notch1-dependent T-cell lineage specification during which the first T-cell lineage genes are expressed and myeloid and dendritic cell potential is lost, T-cell specific transcription factors subsequently induce T-cell commitment by repressing residual natural killer (NK)-cell potential. How these processes are regulated in human is poorly understood, especially since efficient T-cell lineage commitment requires a reduction in Notch signalling activity following T-cell specification. Here, we show that GATA3, in contrast to TCF1, controls human T-cell lineage commitment through direct regulation of three distinct processes: repression of NK-cell fate, upregulation of T-cell lineage genes to promote further differentiation and restraint of Notch activity. Repression of the Notch1 target gene DTX1 hereby is essential to prevent NK-cell differentiation. Thus, GATA3-mediated positive and negative feedback mechanisms control human T-cell lineage commitment.


Subject(s)
Cell Lineage/genetics , Feedback, Physiological , GATA3 Transcription Factor/genetics , Hematopoietic Stem Cells/immunology , Thymocytes/immunology , Cell Differentiation , Cell Lineage/immunology , Cellular Reprogramming , Child , GATA3 Transcription Factor/immunology , Gene Expression Regulation, Developmental , Hematopoietic Stem Cells/cytology , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/immunology , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Primary Cell Culture , Receptor, Notch1/genetics , Receptor, Notch1/immunology , Signal Transduction , Thymocytes/cytology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology
9.
Methods Mol Biol ; 1323: 239-51, 2016.
Article in English | MEDLINE | ID: mdl-26294413

ABSTRACT

Not only is human T cell development characterized by unique changes in surface marker expression, but it also requires specific growth factors and conditions to mimic and study T cell development in vitro. In this chapter, we provide an overview of the specific aspects that need attention when performing T cell differentiation cultures with human progenitors.


Subject(s)
Cell Differentiation , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Cell Culture Techniques , Coculture Techniques , Genetic Vectors/genetics , Humans , Retroviridae/genetics , Transduction, Genetic
10.
Methods Mol Biol ; 1323: 221-37, 2016.
Article in English | MEDLINE | ID: mdl-26294412

ABSTRACT

During their development, human T cells undergo similar genomic changes and pass through the same developmental checkpoints as developing thymocytes in the mouse. The difference between both species, however, is that some of these developmental stages are characterized by different phenotypic markers and as a result, evidence emerges that the molecular regulation of human T cell development subtly differs from the mouse [1-4]. In this chapter, we describe in detail how the different stages of human T cell development can be characterized and isolated using specific surface markers.


Subject(s)
Flow Cytometry , Immunomagnetic Separation/methods , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Antigens, CD/metabolism , Flow Cytometry/methods , Humans , Lymphocyte Depletion , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Thymocytes/cytology , Thymocytes/metabolism
11.
Immunol Rev ; 263(1): 50-67, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25510271

ABSTRACT

Normal T-cell development is a strictly regulated process in which hematopoietic progenitor cells migrate from the bone marrow to the thymus and differentiate from early T-cell progenitors toward mature and functional T cells. During this maturation process, cooperation between a variety of oncogenes and tumor suppressors can drive immature thymocytes into uncontrolled clonal expansion and cause T-cell acute lymphoblastic leukemia (T-ALL). Despite improved insights in T-ALL disease biology and comprehensive characterization of its genetic landscape, clinical care remained largely similar over the past decades and still consists of high-dose multi-agent chemotherapy potentially followed by hematopoietic stem cell transplantation. Even with such aggressive treatment regimens, which are often associated with considerable side effects, clinical outcome is still extremely poor in a significant subset of T-ALL patients as a result of therapy resistance or hematological relapses. Recent genetic studies have identified recurrent somatic alterations in genes involved in DNA methylation and post-translational histone modifications in T-ALL, suggesting that epigenetic homeostasis is critically required in restraining tumor development in the T-cell lineage. In this review, we provide an overview of the epigenetic regulators that could be implicated in T-ALL disease biology and speculate how the epigenetic landscape of T-ALL could trigger the development of epigenetic-based therapies to further improve the treatment of human T-ALL.


Subject(s)
Epigenesis, Genetic , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Lymphocytes/physiology , Animals , Carcinogenesis/genetics , Cell Differentiation , Cell Lineage , DNA Methylation/genetics , Histones/metabolism , Humans , Protein Processing, Post-Translational
12.
J Immunol ; 193(12): 5997-6004, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25381438

ABSTRACT

Although the role for the individual Notch receptors in early hematopoiesis have been thoroughly investigated in mouse, studies in human have been mostly limited to the use of pan-Notch inhibitors. However, such studies in human are important to predict potential side effects of specific Notch receptor blocking reagents because these are currently being considered as therapeutic tools to treat various Notch-dependent diseases. In this study, we studied the individual roles of Notch1 and Notch3 in early human hematopoietic lineage decisions, particularly during T-lineage specification. Although this process in mice is solely dependent on Notch1 activation, we recently reported Notch3 expression in human uncommitted thymocytes, raising the possibility that Notch3 mediates human T-lineage specification. Although expression of a constitutive activated form of Notch3 (ICN3) results in the induction of T-lineage specification in human CD34(+) hematopoietic progenitor cells, similar to ICN1 overexpression, loss-of-function studies using blocking Abs reveal that only Notch1, but not Notch3, is critical in this process. Blocking of Notch1 activation in OP9-DLL4 cocultures resulted in a complete block in T-lineage specification and induced monocytic and plasmacytoid dendritic cell differentiation instead. In fetal thymus organ cultures, impeded Notch1 activation resulted in B and dendritic cell development. In contrast, Notch3 blocking Abs only marginally affected T-lineage specification and hematopoietic differentiation with a slight increase in monocyte development. No induction of B or dendritic cell development was observed. Thus, our results unambiguously reveal a nonredundant role for Notch1 in human T-lineage specification, despite the expression of other Notch receptors.


Subject(s)
Cell Differentiation , Cell Lineage , Receptors, Notch/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Expression , Humans , Immunophenotyping , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Mice , Phenotype , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Receptor, Notch3 , Receptors, Notch/genetics , Thymocytes/cytology , Thymocytes/metabolism
13.
Blood ; 124(25): 3738-47, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25301704

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype of acute lymphoblastic leukemia (ALL) with gradually improved survival through introduction of intensified chemotherapy. However, therapy-resistant or refractory T-ALL remains a major clinical challenge. Here, we evaluated B-cell lymphoma (BCL)-2 inhibition by the BH3 mimetic ABT-199 as a new therapeutic strategy in human T-ALL. The T-ALL cell line LOUCY, which shows a transcriptional program related to immature T-ALL, exhibited high in vitro and in vivo sensitivity for ABT-199 in correspondence with high levels of BCL-2. In addition, ABT-199 showed synergistic therapeutic effects with different chemotherapeutic agents including doxorubicin, l-asparaginase, and dexamethasone. Furthermore, in vitro analysis of primary patient samples indicated that some immature, TLX3- or HOXA-positive primary T-ALLs are highly sensitive to BCL-2 inhibition, whereas TAL1 driven tumors mostly showed poor ABT-199 responses. Because BCL-2 shows high expression in early T-cell precursors and gradually decreases during normal T-cell differentiation, differences in ABT-199 sensitivity could partially be mediated by distinct stages of differentiation arrest between different molecular genetic subtypes of human T-ALL. In conclusion, our study highlights BCL-2 as an attractive molecular target in specific subtypes of human T-ALL that could be exploited by ABT-199.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Blotting, Western , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Child , Drug Synergism , Gene Expression Profiling , Gene Expression Regulation, Leukemic/drug effects , HEK293 Cells , Humans , Inhibitory Concentration 50 , Jurkat Cells , Mice, Inbred NOD , Mice, SCID , Oligonucleotide Array Sequence Analysis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sulfonamides/administration & dosage , Survival Analysis , Tumor Cells, Cultured
14.
Haematologica ; 99(12): 1808-16, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25344525

ABSTRACT

Genetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting a role as an essential driver for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34(+) thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from ex vivo isolated Notch active CD34(+) and Notch inactive CD4(+)CD8(+) thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publicly available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T cells. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way for the development of novel therapeutic strategies that target hyperactive Notch signaling in human T-cell acute lymphoblastic leukemia.


Subject(s)
Biomarkers, Tumor/genetics , Mutation/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , RNA, Long Noncoding/genetics , Receptor, Notch1/metabolism , Thymocytes/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Biomarkers, Tumor/metabolism , Blotting, Western , Case-Control Studies , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Chromatin Immunoprecipitation , Cohort Studies , Enzyme Inhibitors/pharmacology , Follow-Up Studies , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptor, Notch1/antagonists & inhibitors , Receptor, Notch1/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Thymocytes/cytology , Thymocytes/drug effects
15.
Retrovirology ; 10: 137, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24237970

ABSTRACT

BACKGROUND: A nef gene is present in all primate lentiviral genomes and is important for high viral loads and progression to AIDS in human or experimental macaque hosts of HIV or SIV, respectively. In these hosts, infection of the thymus results in a decreased output of naive T cells that may contribute to the development of immunodeficiency. We have previously shown that HIV-1 subtype B Nef proteins can block human T-cell development. However, the underlying mechanism(s) and the conservation of this Nef function between different groups of HIV and SIV remained to be determined. RESULTS: We investigated whether reduction of thymic output is a conserved function of highly divergent lentiviral Nef proteins including those from both types of human immunodeficiency viruses (HIV-1 and HIV-2), their direct simian counterparts (SIVcpz, SIVgor and SIVsmm, respectively), and some additional SIV strains. We found that expression of most of these nef alleles in thymocyte progenitors impaired T-cell development and reduced thymic output. For HIV-1 Nef, binding to active p21 protein (Cdc42/Rac)-activated kinase (PAK2) was a major determinant of this function. In contrast, selective disruption of PAK2 binding did not eliminate the effect on T-cell development of SIVmac239 Nef, as was shown by expressing mutants in a newly discovered PAK2 activating structural motif (PASM) constituted by residues I117, H121, T218 and Y221, as well as previously described mutants. Rather, down-modulation of cell surface CD3 was sufficient for reduced thymic output by SIVmac Nef, while other functions of SIV Nefs contributed. CONCLUSIONS: Our results indicate that primate lentiviral Nef proteins impair development of thymocyte precursors into T cells in multiple ways. The interaction of HIV-1 Nef with active PAK2 by HIV-1 seem to be most detrimental, and downregulation of CD3 by HIV-2 and most SIV Nef proteins sufficient for reduced thymic output. Since the reduction of thymic output by Nef is a conserved property of divergent lentiviruses, it is likely to be relevant for peripheral T-cell depletion in poorly adapted primate lentiviral infections.


Subject(s)
Cell Differentiation/drug effects , T-Lymphocytes/physiology , Thymocytes/physiology , Viral Regulatory and Accessory Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Mice , Mice, SCID , Organ Culture Techniques , T-Lymphocytes/drug effects , Thymocytes/drug effects , Thymus Gland
16.
J Exp Med ; 210(4): 683-97, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23530123

ABSTRACT

In humans, high Notch activation promotes γδ T cell development, whereas lower levels promote αß-lineage differentiation. How these different Notch signals are generated has remained unclear. We show that differential Notch receptor-ligand interactions mediate this process. Whereas Delta-like 4 supports both TCR-αß and -γδ development, Jagged1 induces mainly αß-lineage differentiation. In contrast, Jagged2-mediated Notch activation primarily results in γδ T cell development and represses αß-lineage differentiation by inhibiting TCR-ß formation. Consistently, TCR-αß T cell development is rescued through transduction of a TCR-ß transgene. Jagged2 induces the strongest Notch signal through interactions with both Notch1 and Notch3, whereas Delta-like 4 primarily binds Notch1. In agreement, Notch3 is a stronger Notch activator and only supports γδ T cell development, whereas Notch1 is a weaker activator supporting both TCR-αß and -γδ development. Fetal thymus organ cultures in JAG2-deficient thymic lobes or with Notch3-blocking antibodies confirm the importance of Jagged2/Notch3 signaling in human TCR-γδ differentiation. Our findings reveal that differential Notch receptor-ligand interactions mediate human TCR-αß and -γδ T cell differentiation and provide a mechanistic insight into the high Notch dependency of human γδ T cell development.


Subject(s)
Receptor, Notch1/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Notch/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/immunology , Jagged-1 Protein , Jagged-2 Protein , Male , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Receptor, Notch1/genetics , Receptor, Notch3 , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Notch/genetics , Serrate-Jagged Proteins , Signal Transduction/genetics , Thymus Gland/cytology
17.
Plast Reconstr Surg ; 130(5): 1001-1009, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22777036

ABSTRACT

BACKGROUND: Successful soft-tissue reconstruction requires autologous tissue transfer in respect to the increasingly important "replace like-with-like" principle. Autologous lipoaspirate material for fat grafting can easily be obtained in large amounts without substantial donor-site morbidity. The exact nature and fate of the different cells in the transplanted fat graft and their contribution to tissue reconstruction, however, remain largely unknown. METHODS: Adipose tissue was harvested from healthy female patients. CD34+ adipose-derived stem cells were isolated through magnetic-activated cell sorting and brought into co-culture with mature adipocytes in various culture medium conditions. Proliferation and differentiation of the adipose-derived stem cells were examined through histology, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and polymerase chain reaction assays. RESULTS: This study demonstrates that adipose-derived stem cells from fresh adipose tissue can be isolated within a few hours via magnetic-activated cell sorting with selection for CD34+ cells. All unpassaged adipose-derived stem cells in fresh adipose tissue are CD34+. Subsets include CD34+ CD31+ and CD34+ CD271+. No CD34+ CD45+ cells were present. Histological staining, polymerase chain reaction, and MTT assays confirm that purified mature adipose cells incite adipose-derived stem cells proliferation and adipose differentiation in vitro. CONCLUSIONS: This in vitro study demonstrates important interactions between the main actors in the adipose graft, the adipose-derived stem cells and the mature adipocytes. Although the eventual fate of these cells in a clinically implemented fat graft is still largely unknown, the results of this study support the theory that lipofilling can be conceived as an in vivo tissue engineering approach in which the mature adipocytes within fat grafts support proliferation and differentiation in the co-grafted stromal cell population.


Subject(s)
Adipose Tissue/cytology , Stem Cells/cytology , Tissue Engineering/methods , Adipocytes , Antigens, CD34/metabolism , Cell Differentiation , Cell Proliferation , Coculture Techniques , Female , Flow Cytometry , Humans , Paracrine Communication/physiology , Stromal Cells/physiology , Tissue Scaffolds
18.
Curr Top Microbiol Immunol ; 360: 75-97, 2012.
Article in English | MEDLINE | ID: mdl-22692833

ABSTRACT

Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse.


Subject(s)
Multipotent Stem Cells/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Notch/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Animals , Bone Marrow/metabolism , Cell Differentiation , Cell Lineage , Gene Expression Profiling , Gene Expression Regulation , Humans , Mice , Multipotent Stem Cells/cytology , Receptors, Antigen, T-Cell/genetics , Receptors, Notch/genetics , Species Specificity , T-Lymphocytes/cytology , Thymus Gland/cytology , Thymus Gland/metabolism
19.
Nature ; 473(7346): 230-3, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21562564

ABSTRACT

Notch signalling is a central regulator of differentiation in a variety of organisms and tissue types. Its activity is controlled by the multi-subunit γ-secretase (γSE) complex. Although Notch signalling can play both oncogenic and tumour-suppressor roles in solid tumours, in the haematopoietic system it is exclusively oncogenic, notably in T-cell acute lymphoblastic leukaemia, a disease characterized by Notch1-activating mutations. Here we identify novel somatic-inactivating Notch pathway mutations in a fraction of patients with chronic myelomonocytic leukaemia (CMML). Inactivation of Notch signalling in mouse haematopoietic stem cells (HSCs) results in an aberrant accumulation of granulocyte/monocyte progenitors (GMPs), extramedullary haematopoieisis and the induction of CMML-like disease. Transcriptome analysis revealed that Notch signalling regulates an extensive myelomonocytic-specific gene signature, through the direct suppression of gene transcription by the Notch target Hes1. Our studies identify a novel role for Notch signalling during early haematopoietic stem cell differentiation and suggest that the Notch pathway can play both tumour-promoting and -suppressive roles within the same tissue.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor/physiology , Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/pathology , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Cells, Cultured , Gene Expression Profiling , Gene Silencing , Granulocyte-Macrophage Progenitor Cells/cytology , Granulocyte-Macrophage Progenitor Cells/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Mutation , Receptors, Notch/deficiency , Transcription Factor HES-1 , Tumor Cells, Cultured
20.
Blood ; 117(17): 4449-59, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21372153

ABSTRACT

Notch signaling critically mediates various hematopoietic lineage decisions and is induced in mammals by Notch ligands that are classified into 2 families, Delta-like (Delta-like-1, -3 and -4) and Jagged (Jagged1 and Jagged2), based on structural homology with both Drosophila ligands Delta and Serrate, respectively. Because the functional differences between mammalian Notch ligands were still unclear, we have investigated their influence on early human hematopoiesis and show that Jagged2 affects hematopoietic lineage decisions very similarly as Delta-like-1 and -4, but very different from Jagged1. OP9 coculture experiments revealed that Jagged2, like Delta-like ligands, induces T-lineage differentiation and inhibits B-cell and myeloid development. However, dose-dependent Notch activation studies, gene expression analysis, and promoter activation assays indicated that Jagged2 is a weaker Notch1-activator compared with the Delta-like ligands, revealing a Notch1 specific signal strength hierarchy for mammalian Notch ligands. Strikingly, Lunatic-Fringe- mediated glycosylation of Notch1 potentiated Notch signaling through Delta-like ligands and also Jagged2, in contrast to Jagged1. Thus, our results reveal a unique role for Jagged1 in preventing the induction of T-lineage differentiation in hematopoietic stem cells and show an unexpected functional similarity between Jagged2 and the Delta-like ligands.


Subject(s)
Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Adaptor Proteins, Signal Transducing , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Calcium-Binding Proteins/metabolism , Cell Differentiation/physiology , Cells, Cultured , Drosophila Proteins , Glycosylation , Glycosyltransferases/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Jagged-1 Protein , Jagged-2 Protein , Receptor, Notch1/metabolism , Serrate-Jagged Proteins , Signal Transduction/physiology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...