Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Drug Resist ; 6(4): 709-728, 2023.
Article in English | MEDLINE | ID: mdl-38239393

ABSTRACT

Aim: Acquired resistance to the targeted agent cetuximab poses a significant challenge in finding effective anti-cancer treatments for head and neck squamous cell carcinoma (HNSCC). To accurately study novel combination treatments, suitable preclinical mouse models for cetuximab resistance are key yet currently limited. This study aimed to optimize an acquired cetuximab-resistant mouse model, with preservation of the innate immunity, ensuring intact antibody-dependent cellular cytotoxicity (ADCC) functionality. Methods: Cetuximab-sensitive and acquired-resistant HNSCC cell lines, generated in vitro, were subcutaneously engrafted in Rag2 knock-out (KO), BALB/c Nude and CB17 Scid mice with/without Matrigel or Geltrex. Once tumor growth was established, mice were intraperitoneally injected twice a week with cetuximab for a maximum of 3 weeks. In addition, immunohistochemistry was used to evaluate the tumor and its microenvironment. Results: Despite several adjustments in cell number, cell lines and the addition of Matrigel, Rag2 KO and BALB/C Nude mice proved to be unsuitable for xenografting our HNSCC cell lines. Durable tumor growth of resistant SC263-R cells could be induced in CB17 Scid mice. However, these cells had lost their resistance phenotype in vivo. Immunohistochemistry revealed a high infiltration of macrophages in cetuximab-treated SC263-R tumors. FaDu-S and FaDu-R cells successfully engrafted into CB17 Scid mice and maintained their sensitivity/resistance to cetuximab. Conclusion: We have established in vivo HNSCC mouse models with intact ADCC functionality for cetuximab resistance and sensitivity using the FaDu-R and FaDu-S cell lines, respectively. These models serve as valuable tools for investigating cetuximab resistance mechanisms and exploring novel drug combination strategies.

2.
Drug Resist Updat ; 60: 100806, 2022 01.
Article in English | MEDLINE | ID: mdl-35121337

ABSTRACT

Squamous cell carcinoma of the head and neck (SCCHN) is among the most prevalent cancer types worldwide. Despite multimodal therapeutic approaches that include surgical resection, radiation therapy or concurrent chemoradiation, targeted therapy and immunotherapy, SCCHN is still associated with a poor prognosis for patients with locally advanced or recurrent/metastatic (R/M) diseases. Although next-generation sequencing data from thousands of SCCHN patients have provided a comprehensive landscape of the somatic genomic alterations in this disease, genomic-based precision medicine is not implemented yet in routine clinical use since no satisfactory genetic biomarker has been identified for diagnosis, patient outcome prediction and selection of tailored therapeutic options. The lack of significant improvement in SCCHN patient survival over the last decades stresses the need for reliable predictive biomarkers and new therapeutic strategies for personalized clinical management of SCCHN patients. Targeting the SCCHN-associated microenvironment or the interaction of the latter with cancer cells may represent such paradigm shift in the development of new strategies to treat SCCHN patients, as exemplified by the recent implementation of immune checkpoint inhibitors to improve clinical outcomes by increasing anti-tumor immune responses in SCCHN patients. Several clinical trials are in progress in SCCHN patients to evaluate the activity of monoclonal antibodies and small-molecule inhibitors targeting the tumor microenvironment (TME) at different treatment settings, including combinations with adjuvant surgery, radiation therapy and chemotherapy. This review describes the current knowledge about the influence of the TME on intratumoral heterogeneity and clinical relapse in human SCCHN patients. More precisely, the role of hypoxia as well as the presence of non-cancer cells (e.g. cancer-associated fibroblasts and immune cells) on therapy response of SCCHN cells is highlighted. We also discuss relevant (pre)clinical models that may help integrate the microenvironment-tumor cell interplay in translational research studies for SCCHN. Finally, this review explores potential therapeutic strategies that may exploit the crosstalk between TME and SCCHN cells in order to implement fundamental changes in the tumor treatment paradigm of patients with locally advanced or R/M SCCHN.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Carcinoma, Squamous Cell/therapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Humans , Immunotherapy , Precision Medicine , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy , Tumor Microenvironment/genetics
3.
Target Oncol ; 15(1): 139-146, 2020 02.
Article in English | MEDLINE | ID: mdl-32020516

ABSTRACT

BACKGROUND: We describe in a patient with breast cancer the change in c-MET expression during everolimus treatment, opening a better understanding of the resistance to everolimus and a role for cabozantinib. OBJECTIVE: The objective of this study was to evaluate c-MET as a potential predictive biomarker for everolimus efficacy in breast cancer. METHODS: We first selected a patient with breast cancer with a long-lasting response to everolimus and retrospectively profiled biopsies that were taken before everolimus initiation (Biopsy 1) and at progression on everolimus (Biopsy 2) using amplicon sequencing and immunohistochemistry. We then retrospectively evaluated c-MET expression in a cohort of patients with breast cancer treated with everolimus. RESULTS: While not expressed in Biopsy 1, c-MET was highly expressed in Biopsy 2, suggesting a role for c-MET in breast cancer progression. Cabozantinib resulted in a rapid radiological response in this patient. Twenty-nine patients were included (12 c-MET-positive and 17 c-MET-negative patients) in the second part of the study. Baseline c-MET expression was associated with higher tumor grade, higher frequency of visceral metastases, and lower endocrine sensitivity. The c-MET-positive patients presented with a shorter progression-free survival (6.1 vs 10.5 months, respectively; p = 0.002) and a lower response rate (0% vs 12%) to everolimus, compared with c-MET-negative patients. CONCLUSIONS: c-MET could play a role in the resistance to everolimus and its inhibition should be evaluated in breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Everolimus/therapeutic use , Proto-Oncogene Proteins c-met/metabolism , Aged , Breast Neoplasms/mortality , Cohort Studies , Everolimus/pharmacology , Female , Humans , Retrospective Studies , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...