Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Transl Psychiatry ; 14(1): 259, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890284

ABSTRACT

A range of rare mutations involving micro-deletion or -duplication of genetic material (copy number variants (CNVs)) have been associated with high neurodevelopmental and psychiatric risk (ND-CNVs). Irritability is frequently observed in childhood neurodevelopmental conditions, yet its aetiology is largely unknown. Genetic variation may play a role, but there is a sparsity of studies investigating the presentation of irritability in young people with ND-CNVs. This study aimed to investigate whether there is a difference in irritability in young people with rare ND-CNVs compared to those without ND-CNVs, and to what extent irritability is associated with psychiatric diagnoses and cognitive ability (IQ). Irritability and broader psychopathology were assessed in 485 young people with ND-CNVs and 164 sibling controls, using the child and adolescent psychiatric assessment. Autism was assessed using the social communication questionnaire, and intelligence quotient (IQ) by the Wechsler abbreviated scale of intelligence. Fifty four percent of young people with ND-CNVs met the threshold for irritability; significantly more than controls (OR = 3.77, CI = 3.07-7.90, p = 5.31 × 10-11). When controlling for the presence of other psychiatric comorbidities, ND-CNV status was still associated with irritability. There was no evidence for a relationship between irritability and IQ. Irritability is an important aspect of the clinical picture in young people with ND-CNVs. This work shows that genetic variation is associated with irritability in young people with ND-CNVs, independent of psychiatric comorbidities or IQ impairment. Clinicians should be aware of this increased risk to inform management and interventions.


Subject(s)
DNA Copy Number Variations , Irritable Mood , Neurodevelopmental Disorders , Humans , Male , Female , Adolescent , Neurodevelopmental Disorders/genetics , Child , Intelligence/genetics , Case-Control Studies , Siblings
3.
Nat Commun ; 15(1): 2639, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531844

ABSTRACT

Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.


Subject(s)
DNA Copy Number Variations , Genome-Wide Association Study , Humans , Functional Laterality , Brain Mapping , Brain , Magnetic Resonance Imaging
4.
BMC Psychol ; 12(1): 137, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475925

ABSTRACT

BACKGROUND: 16p11.2 proximal deletion and duplication syndromes (Break points 4-5) (593KB, Chr16; 29.6-30.2mb - HG38) are observed to have highly varied phenotypes, with a known propensity for lifelong psychiatric problems. This study aimed to contribute to a research gap by qualitatively exploring the challenges families with 16p11.2 deletion and duplication face by answering three research questions: (1) What are parents' perceptions of the ongoing support needs of families with children who have 16p11.2 living in the UK?; (2) What are their experiences in trying to access support?; (3) In these regards, do the experiences of parents of children with duplication converge or vary from those of parents of children with 16p11.2 deletion? METHODS: 33 parents with children (aged 7-17 years) with 16p11.2 deletion or duplication participated in structured interviews, including the Autism Diagnostic Interview- Revised (ADI-R). Their answers to the ADI-R question 'what are your current concerns' were transcribed and subsequently analysed using Braun and Clarke's six step reflexive thematic analysis framework. RESULTS: Three themes were identified: (1) Child is Behind Peers (subthemes: developmentally; academically; socially; emotionally); (2) Metabolism and Eating Patterns and; (3) Support (subthemes: insufficient support available; parent has to fight to access support; COVID-19 was a barrier to accessing support; 16p11.2 diagnosis can be a barrier to support, child is well-supported). CONCLUSIONS: Parents of children with either 16p11.2 deletion or duplication shared similar experiences. However, metabolism concerns were specific to parents of children with 16p11.2 deletion. The theme Child is Behind Peers echoed concerns raised in previous Neurodevelopmental Copy Number Variant research. However, there were some key subthemes relating to research question (2) which were specific to this study. This included parents' descriptions of diagnostic overshadowing and the impact of a lack of eponymous name and scant awareness of 16p11.2.


Subject(s)
Autistic Disorder , Chromosome Deletion , Child , Humans , Autistic Disorder/genetics , Parents
5.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224541

ABSTRACT

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Subject(s)
DiGeorge Syndrome , Psychotic Disorders , Female , Humans , Adolescent , Male , DiGeorge Syndrome/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Psychotic Disorders/complications , Gray Matter/diagnostic imaging
6.
Neuropsychopharmacology ; 49(2): 368-376, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37402765

ABSTRACT

Although many genetic risk factors for psychiatric and neurodevelopmental disorders have been identified, the neurobiological route from genetic risk to neuropsychiatric outcome remains unclear. 22q11.2 deletion syndrome (22q11.2DS) is a copy number variant (CNV) syndrome associated with high rates of neurodevelopmental and psychiatric disorders including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia. Alterations in neural integration and cortical connectivity have been linked to the spectrum of neuropsychiatric disorders seen in 22q11.2DS and may be a mechanism by which the CNV acts to increase risk. In this study, magnetoencephalography (MEG) was used to investigate electrophysiological markers of local and global network function in 34 children with 22q11.2DS and 25 controls aged 10-17 years old. Resting-state oscillatory activity and functional connectivity across six frequency bands were compared between groups. Regression analyses were used to explore the relationships between these measures, neurodevelopmental symptoms and IQ. Children with 22q11.2DS had altered network activity and connectivity in high and low frequency bands, reflecting modified local and long-range cortical circuitry. Alpha and theta band connectivity were negatively associated with ASD symptoms while frontal high frequency (gamma band) activity was positively associated with ASD symptoms. Alpha band activity was positively associated with cognitive ability. These findings suggest that haploinsufficiency at the 22q11.2 locus impacts short and long-range cortical circuits, which could be a mechanism underlying neurodevelopmental and psychiatric vulnerability in this high-risk group.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , DiGeorge Syndrome , Child , Humans , Adolescent , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/complications , DiGeorge Syndrome/genetics , DiGeorge Syndrome/complications , DiGeorge Syndrome/diagnosis , Attention Deficit Disorder with Hyperactivity/genetics , Cognition , Risk Factors
7.
medRxiv ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38106165

ABSTRACT

Background: A range of rare mutations involving micro-deletion or -duplication of genetic material (copy number variants (CNVs)) have been associated with high neurodevelopmental and psychiatric risk (ND-CNVs). Irritability is frequently observed in childhood neurodevelopmental conditions, yet its aetiology is largely unknown. Genetic variation may play a role, but there is a sparsity of studies investigating presentation of irritability in young people with ND-CNVs. Aims: This study aimed to investigate whether there is a difference in irritability in young people with rare ND-CNVs compared to those without ND-CNVs, and to what extent irritability is associated with psychiatric diagnoses and cognitive ability (IQ). Methods: Irritability and broader psychopathology was assessed in 485 young people with ND-CNVs and 164 sibling controls, using the child and adolescent psychiatric assessment (CAPA). Autism was assessed using the Social Communication Questionnaire (SCQ), and Intelligence Quotient (IQ) by the Wechsler Abbreviated Scale of Intelligence (WASI). Results: 54% of young people with ND-CNVs met the threshold for irritability; significantly more than controls (OR = 3.77, CI = 3.07-7.90, p= 5.31 × 10-11). When controlling for the presence of other psychiatric comorbidities, ND-CNV status was still associated with irritability. There was no evidence for a relationship between irritability and IQ. Conclusions: Irritability is an important aspect of the clinical picture in young people with ND-CNVs. This work shows that genetic variation is associated with irritability in young people with ND-CNVs, independent of psychiatric comorbidities or IQ impairment. Clinicians should be aware of this increased risk to inform management and interventions.

8.
JCPP Adv ; 3(2): e12162, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37753151

ABSTRACT

Background: Individuals with 22q11.2 deletion are at considerably increased risk of neurodevelopmental and psychiatric conditions. There have been very few studies investigating how this risk manifests in early childhood and what factors may underlie developmental variability. Insights into this can elucidate transdiagnostic markers of risk that may underlie later development of neuropsychiatric outcomes. Methods: Thirty two children with 22q11.2 Deletion Syndrome (22q11.2DS) (mean age = 4.1 [SD = 1.2] years) and 12 sibling controls (mean age = 4.1 [SD = 1.5] years) underwent in-depth dimensional phenotyping across several developmental domains selected as being potential early indicators of neurodevelopmental and psychiatric liability. Comparisons were conducted of the dimensional developmental phenotype of 22q11.2DS and sibling controls. For autistic traits, both parents and children were phenotyped using the Social Responsiveness Scale. Results: Young children with 22q11.2DS exhibited large impairments (Hedge's g ≥ 0.8) across a range of developmental domains relative to sibling controls, as well as high rates of transdiagnostic neurodevelopmental and psychiatric traits. Cluster analysis revealed a subgroup of children with 22q11.2DS (n = 16; 53%) in whom neurodevelopmental and psychiatric liability was particularly increased and who differed from other children with 22q11.2DS and non-carrier siblings. Exploratory analyses revealed that early motor and sleep impairments indexed liability for neurodevelopmental and psychiatric outcomes. Maternal autism trait scores were predictive of autism traits in children with 22q11.2DS (intraclass correlation coefficients = 0.47, p = 0.046, n = 31). Conclusions: Although psychiatric conditions typically emerge later in adolescence and adulthood in 22q11.2DS, our exploratory study was able to identify a range of early risk indicators. Furthermore, findings indicate the presence of a subgroup who appeared to have increased neurodevelopmental and psychiatric liability. Our findings highlight the scope for future studies of early risk mechanisms and early intervention within this high genetic risk patient group.

9.
Am J Psychiatry ; 180(9): 685-698, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37434504

ABSTRACT

OBJECTIVE: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs), including autism (ASD) and schizophrenia. Little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, the authors investigated gross volume, vertex-level thickness, and surface maps of subcortical structures in 11 CNVs and six NPDs. METHODS: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (CNVs at 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2; age range, 6-80 years; 340 males) and 782 control subjects (age range, 6-80 years; 387 males) as well as ENIGMA summary statistics for ASD, schizophrenia, attention deficit hyperactivity disorder, obsessive-compulsive disorder, bipolar disorder, and major depression. RESULTS: All CNVs showed alterations in at least one subcortical measure. Each structure was affected by at least two CNVs, and the hippocampus and amygdala were affected by five. Shape analyses detected subregional alterations that were averaged out in volume analyses. A common latent dimension was identified, characterized by opposing effects on the hippocampus/amygdala and putamen/pallidum, across CNVs and across NPDs. Effect sizes of CNVs on subcortical volume, thickness, and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and schizophrenia. CONCLUSIONS: The findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions, as well distinct effects, with some CNVs clustering with adult-onset conditions and others with ASD. These findings provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD and why a single CNV increases the risk for a diverse set of NPDs.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Schizophrenia , Male , Adult , Humans , Child , Adolescent , Young Adult , Middle Aged , Aged , Aged, 80 and over , DNA Copy Number Variations/genetics , Schizophrenia/genetics , Brain/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/genetics , Genomics
10.
JCPP Adv ; 3(1): e12128, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37431317

ABSTRACT

Background: Many children with an intellectual or developmental disability (IDD) have associated autism spectrum disorders (ASD), as well as an increased risk of mental health difficulties. In a cohort with IDD of genetic aetiology, we tested the hypothesis that excess risk attached to those with ASD + IDD, in terms of both children's mental health and parental psychological distress. Methods: Participants with a copy number variant or single nucleotide variant (5-19 years) were recruited via UK National Health Service. 1904 caregivers competed an online assessment of child mental health and reported on their own psychological wellbeing. We used regression to examine the association between IDD with and without co-occurring ASD, and co-occurring mental health difficulties, as well as with parental psychological distress. We adjusted for children's sex, developmental level, physical health, and socio-economic deprivation. Results: Of the 1904 participants with IDD, 701 (36.8%) had co-occurring ASD. Children with both IDD and ASD were at higher risk of associated disorders than those with IDD alone (ADHD: OR = 1.84, 95% confidence interval [CI] 1.46-2.32, p < 0.0001; emotional disorders: OR = 1.85, 95%CI 1.36-2.5, p < 0.0001; disruptive behaviour disorders: OR = 1.79, 95%CI 1.36-2.37, p < 0.0001). The severity of associated symptoms was also greater in those with ASD (hyperactivity: B = 0.25, 95%CI 0.07-0.34, p = 0.006; emotional difficulties: B = 0.91, 95%CI 0.67 to 1.14, p < 0.0001; conduct problems: B = 0.25, 95%CI 0.05 to 0.46, p = 0.013). Parents of children with IDD and ASD also reported greater psychological distress than those with IDD alone (ß = 0.1, 95% CI 0.85 to 2.21, p < 0.0001). Specifically, in those with ASD, symptoms of hyperactivity (ß = 0.13, 95% CI 0.29-0.63, p < 0.0001), emotional difficulties (ß = 0.15, 95% CI 0.26-0.51, p < 0.0001) and conduct difficulties (ß = 0.07, 95% CI 0.07-0.37, p < 0.004) all significantly contributed to parental psychological distress. Conclusions: Among children with IDD of genetic aetiology, one third have co-occurring ASD. Not only do those with co-occurring ASD present with a wider range of associated mental health disorders and more severe mental health difficulties than those with IDD alone, but their parents also experience more psychological distress. Our findings suggest that the additional mental health and behavioural symptoms in those with ASD contributed to the degree of parental psychological distress.

11.
NPJ Genom Med ; 8(1): 17, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37463940

ABSTRACT

Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHD.

12.
Mol Psychiatry ; 28(10): 4342-4352, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37495890

ABSTRACT

22q11.2 deletion syndrome, or 22q11.2DS, is a genetic syndrome associated with high rates of schizophrenia and autism spectrum disorders, in addition to widespread structural and functional abnormalities throughout the brain. Experimental animal models have identified neuronal connectivity deficits, e.g., decreased axonal length and complexity of axonal branching, as a primary mechanism underlying atypical brain development in 22q11.2DS. However, it is still unclear whether deficits in axonal morphology can also be observed in people with 22q11.2DS. Here, we provide an unparalleled in vivo characterization of white matter microstructure in participants with 22q11.2DS (12-15 years) and those undergoing typical development (8-18 years) using a customized magnetic resonance imaging scanner which is sensitive to axonal morphology. A rich array of diffusion MRI metrics are extracted to present microstructural profiles of typical and atypical white matter development, and provide new evidence of connectivity differences in individuals with 22q11.2DS. A recent, large-scale consortium study of 22q11.2DS identified higher diffusion anisotropy and reduced overall diffusion mobility of water as hallmark microstructural alterations of white matter in individuals across a wide age range (6-52 years). We observed similar findings across the white matter tracts included in this study, in addition to identifying deficits in axonal morphology. This, in combination with reduced tract volume measurements, supports the hypothesis that abnormal microstructural connectivity in 22q11.2DS may be mediated by densely packed axons with disproportionately small diameters. Our findings provide insight into the in vivo white matter phenotype of 22q11.2DS, and promote the continued investigation of shared features in neurodevelopmental and psychiatric disorders.


Subject(s)
DiGeorge Syndrome , Schizophrenia , White Matter , Humans , Child , Adolescent , Young Adult , Adult , Middle Aged , DiGeorge Syndrome/genetics , Diffusion Tensor Imaging/methods , Brain
13.
Mol Autism ; 14(1): 19, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221545

ABSTRACT

BACKGROUND: Genomic conditions can be associated with developmental delay, intellectual disability, autism spectrum disorder, and physical and mental health symptoms. They are individually rare and highly variable in presentation, which limits the use of standard clinical guidelines for diagnosis and treatment. A simple screening tool to identify young people with genomic conditions associated with neurodevelopmental disorders (ND-GCs) who could benefit from further support would be of considerable value. We used machine learning approaches to address this question. METHOD: A total of 493 individuals were included: 389 with a ND-GC, mean age = 9.01, 66% male) and 104 siblings without known genomic conditions (controls, mean age = 10.23, 53% male). Primary carers completed assessments of behavioural, neurodevelopmental and psychiatric symptoms and physical health and development. Machine learning techniques (penalised logistic regression, random forests, support vector machines and artificial neural networks) were used to develop classifiers of ND-GC status and identified limited sets of variables that gave the best classification performance. Exploratory graph analysis was used to understand associations within the final variable set. RESULTS: All machine learning methods identified variable sets giving high classification accuracy (AUROC between 0.883 and 0.915). We identified a subset of 30 variables best discriminating between individuals with ND-GCs and controls which formed 5 dimensions: conduct, separation anxiety, situational anxiety, communication and motor development. LIMITATIONS: This study used cross-sectional data from a cohort study which was imbalanced with respect to ND-GC status. Our model requires validation in independent datasets and with longitudinal follow-up data for validation before clinical application. CONCLUSIONS: In this study, we developed models that identified a compact set of psychiatric and physical health measures that differentiate individuals with a ND-GC from controls and highlight higher-order structure within these measures. This work is a step towards developing a screening instrument to identify young people with ND-GCs who might benefit from further specialist assessment.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Male , Humans , Adolescent , Child , Female , Cohort Studies , Cross-Sectional Studies , Genomics , Machine Learning
14.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131672

ABSTRACT

Asymmetry between the left and right brain is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variant studies, which typically exert small effects on brain phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We quantitatively dissected the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior mapping highlights the consequences of genetically controlled brain lateralization on human-defining cognitive traits.

15.
Nat Hum Behav ; 7(6): 1001-1017, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36864136

ABSTRACT

Copy number variations (CNVs) are rare genomic deletions and duplications that can affect brain and behaviour. Previous reports of CNV pleiotropy imply that they converge on shared mechanisms at some level of pathway cascades, from genes to large-scale neural circuits to the phenome. However, existing studies have primarily examined single CNV loci in small clinical cohorts. It remains unknown, for example, how distinct CNVs escalate vulnerability for the same developmental and psychiatric disorders. Here we quantitatively dissect the associations between brain organization and behavioural differentiation across 8 key CNVs. In 534 CNV carriers, we explored CNV-specific brain morphology patterns. CNVs were characteristic of disparate morphological changes involving multiple large-scale networks. We extensively annotated these CNV-associated patterns with ~1,000 lifestyle indicators through the UK Biobank resource. The resulting phenotypic profiles largely overlap and have body-wide implications, including the cardiovascular, endocrine, skeletal and nervous systems. Our population-level investigation established brain structural divergences and phenotypical convergences of CNVs, with direct relevance to major brain disorders.


Subject(s)
Brain , DNA Copy Number Variations , Humans , DNA Copy Number Variations/genetics , Brain/diagnostic imaging
16.
medRxiv ; 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36865328

ABSTRACT

Objectives: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs) including autism (ASD) and schizophrenia (SZ). Overall, little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, we investigated gross volume, and vertex level thickness and surface maps of subcortical structures in 11 different CNVs and 6 different NPDs. Methods: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (at the following loci: 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2) and 782 controls (Male/Female: 727/730; age-range: 6-80 years) as well as ENIGMA summary-statistics for ASD, SZ, ADHD, Obsessive-Compulsive-Disorder, Bipolar-Disorder, and Major-Depression. Results: Nine of the 11 CNVs affected volume of at least one subcortical structure. The hippocampus and amygdala were affected by five CNVs. Effect sizes of CNVs on subcortical volume, thickness and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and SZ. Shape analyses were able to identify subregional alterations that were averaged out in volume analyses. We identified a common latent dimension - characterized by opposing effects on basal ganglia and limbic structures - across CNVs and across NPDs. Conclusion: Our findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions. We also observed distinct effects with some CNVs clustering with adult conditions while others clustered with ASD. This large cross-CNV and NPDs analysis provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD, as well as why a single CNV increases the risk for a diverse set of NPDs.

17.
Mol Psychiatry ; 28(5): 2071-2080, 2023 May.
Article in English | MEDLINE | ID: mdl-36869225

ABSTRACT

22q11.2 deletion is one of the strongest known genetic risk factors for schizophrenia. Recent whole-genome sequencing of schizophrenia cases and controls with this deletion provided an unprecedented opportunity to identify risk modifying genetic variants and investigate their contribution to the pathogenesis of schizophrenia in 22q11.2 deletion syndrome. Here, we apply a novel analytic framework that integrates gene network and phenotype data to investigate the aggregate effects of rare coding variants and identified modifier genes in this etiologically homogenous cohort (223 schizophrenia cases and 233 controls of European descent). Our analyses revealed significant additive genetic components of rare nonsynonymous variants in 110 modifier genes (adjusted P = 9.4E-04) that overall accounted for 4.6% of the variance in schizophrenia status in this cohort, of which 4.0% was independent of the common polygenic risk for schizophrenia. The modifier genes affected by rare coding variants were enriched with genes involved in synaptic function and developmental disorders. Spatiotemporal transcriptomic analyses identified an enrichment of coexpression between modifier and 22q11.2 genes in cortical brain regions from late infancy to young adulthood. Corresponding gene coexpression modules are enriched with brain-specific protein-protein interactions of SLC25A1, COMT, and PI4KA in the 22q11.2 deletion region. Overall, our study highlights the contribution of rare coding variants to the SCZ risk. They not only complement common variants in disease genetics but also pinpoint brain regions and developmental stages critical to the etiology of syndromic schizophrenia.


Subject(s)
DiGeorge Syndrome , Schizophrenia , Humans , Young Adult , Adult , Schizophrenia/genetics , DiGeorge Syndrome/genetics , Brain , Gene Expression Profiling , Whole Genome Sequencing
18.
BJPsych Open ; 9(2): e32, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36752340

ABSTRACT

BACKGROUND: Current psychiatric diagnoses, although heritable, have not been clearly mapped onto distinct underlying pathogenic processes. The same symptoms often occur in multiple disorders, and a substantial proportion of both genetic and environmental risk factors are shared across disorders. However, the relationship between shared symptoms and shared genetic liability is still poorly understood. AIMS: Well-characterised, cross-disorder samples are needed to investigate this matter, but few currently exist. Our aim is to develop procedures to purposely curate and aggregate genotypic and phenotypic data in psychiatric research. METHOD: As part of the Cardiff MRC Mental Health Data Pathfinder initiative, we have curated and harmonised phenotypic and genetic information from 15 studies to create a new data repository, DRAGON-Data. To date, DRAGON-Data includes over 45 000 individuals: adults and children with neurodevelopmental or psychiatric diagnoses, affected probands within collected families and individuals who carry a known neurodevelopmental risk copy number variant. RESULTS: We have processed the available phenotype information to derive core variables that can be reliably analysed across groups. In addition, all data-sets with genotype information have undergone rigorous quality control, imputation, copy number variant calling and polygenic score generation. CONCLUSIONS: DRAGON-Data combines genetic and non-genetic information, and is available as a resource for research across traditional psychiatric diagnostic categories. Algorithms and pipelines used for data harmonisation are currently publicly available for the scientific community, and an appropriate data-sharing protocol will be developed as part of ongoing projects (DATAMIND) in partnership with Health Data Research UK.

19.
Transl Psychiatry ; 13(1): 7, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631438

ABSTRACT

Children with rare neurodevelopmental genetic conditions (ND-GCs) are at high risk for a range of neuropsychiatric conditions. Sleep symptomatology may represent a transdiagnostic risk indicator within this patient group. Here we present data from 629 children with ND-GCs, recruited via the United Kingdom's National Health Service medical genetic clinics. Sibling controls (183) were also invited to take part. Detailed assessments were conducted to characterise the sleep phenotype of children with ND-GCs in comparison to controls. Latent class analysis was conducted to derive subgroups of children with an ND-GC based on sleep symptomatology. Assessment of cognition and psychopathology allowed investigation of whether the sleep phenotypic subgroup was associated with neuropsychiatric outcomes. We found that children with an ND-GC, when compared to control siblings, were at elevated risk of insomnia (ND-GC = 41% vs Controls = 17%, p < 0.001) and of experiencing at least one sleep symptom (ND-GC = 66% vs Controls = 39%, p < 0.001). On average, insomnia was found to have an early onset (2.8 years) in children with an ND-GC and to impact across multiple contexts. Children in subgroups linked to high sleep symptomatology were also at high risk of psychiatric outcomes (OR ranging from 2.0 to 21.5 depending on psychiatric condition). Our findings demonstrate that children with high genetic vulnerability for neurodevelopmental outcomes exhibit high rates of insomnia and sleep symptomatology. Sleep disruption has wide-ranging impacts on psychosocial function, and indexes those children at greater neuropsychiatric risk. Insomnia was found to onset in early childhood, highlighting the potential for early intervention strategies for psychiatric risk informed by sleep profile.


Subject(s)
Neurodevelopmental Disorders , Sleep Initiation and Maintenance Disorders , Sleep Wake Disorders , Humans , Child , Child, Preschool , Sleep Initiation and Maintenance Disorders/diagnosis , Sleep Initiation and Maintenance Disorders/genetics , State Medicine , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/genetics , Sleep Wake Disorders/diagnosis , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL
...