Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLoS One ; 11(8): e0160106, 2016.
Article in English | MEDLINE | ID: mdl-27557096

ABSTRACT

Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals' life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human-wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement.


Subject(s)
Animal Migration , Birds , Darkness , Flight, Animal , Radar , Animals , Europe , United States , Web Browser
2.
PLoS One ; 6(8): e23176, 2011.
Article in English | MEDLINE | ID: mdl-21858018

ABSTRACT

BACKGROUND: Little quantitative information is available on the mixing patterns of children in school environments. Describing and understanding contacts between children at school would help quantify the transmission opportunities of respiratory infections and identify situations within schools where the risk of transmission is higher. We report on measurements carried out in a French school (6-12 years children), where we collected data on the time-resolved face-to-face proximity of children and teachers using a proximity-sensing infrastructure based on radio frequency identification devices. METHODS AND FINDINGS: Data on face-to-face interactions were collected on Thursday, October 1(st) and Friday, October 2(nd) 2009. We recorded 77,602 contact events between 242 individuals (232 children and 10 teachers). In this setting, each child has on average 323 contacts per day with 47 other children, leading to an average daily interaction time of 176 minutes. Most contacts are brief, but long contacts are also observed. Contacts occur mostly within each class, and each child spends on average three times more time in contact with classmates than with children of other classes. We describe the temporal evolution of the contact network and the trajectories followed by the children in the school, which constrain the contact patterns. We determine an exposure matrix aimed at informing mathematical models. This matrix exhibits a class and age structure which is very different from the homogeneous mixing hypothesis. CONCLUSIONS: We report on important properties of the contact patterns between school children that are relevant for modeling the propagation of diseases and for evaluating control measures. We discuss public health implications related to the management of schools in case of epidemics and pandemics. Our results can help define a prioritization of control measures based on preventive measures, case isolation, classes and school closures, that could reduce the disruption to education during epidemics.


Subject(s)
Respiratory Tract Infections/transmission , Social Behavior , Social Environment , Algorithms , Child , Humans , Models, Biological , Schools , Time Factors
3.
BMC Med ; 9: 87, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21771290

ABSTRACT

BACKGROUND: The spread of infectious diseases crucially depends on the pattern of contacts between individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. However, there are few empirical studies available that provide estimates of the number and duration of contacts between social groups. Moreover, their space and time resolutions are limited, so that data are not explicit at the person-to-person level, and the dynamic nature of the contacts is disregarded. In this study, we aimed to assess the role of data-driven dynamic contact patterns between individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. METHODS: We considered high-resolution data about face-to-face interactions between the attendees at a conference, obtained from the deployment of an infrastructure based on radiofrequency identification (RFID) devices that assessed mutual face-to-face proximity. The spread of epidemics along these interactions was simulated using an SEIR (Susceptible, Exposed, Infectious, Recovered) model, using both the dynamic network of contacts defined by the collected data, and two aggregated versions of such networks, to assess the role of the data temporal aspects. RESULTS: We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation that retains only the topology of the contact network fails to reproduce the size of the epidemic. CONCLUSIONS: These results have important implications for understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics. Please see related article BMC Medicine, 2011, 9:88.


Subject(s)
Communicable Diseases/epidemiology , Communicable Diseases/transmission , Contact Tracing/methods , Disease Outbreaks , Computer Simulation , Humans , Time Factors
4.
PLoS One ; 6(2): e17144, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21386902

ABSTRACT

BACKGROUND: Nosocomial infections place a substantial burden on health care systems and represent one of the major issues in current public health, requiring notable efforts for its prevention. Understanding the dynamics of infection transmission in a hospital setting is essential for tailoring interventions and predicting the spread among individuals. Mathematical models need to be informed with accurate data on contacts among individuals. METHODS AND FINDINGS: We used wearable active Radio-Frequency Identification Devices (RFID) to detect face-to-face contacts among individuals with a spatial resolution of about 1.5 meters, and a time resolution of 20 seconds. The study was conducted in a general pediatrics hospital ward, during a one-week period, and included 119 participants, with 51 health care workers, 37 patients, and 31 caregivers. Nearly 16,000 contacts were recorded during the study period, with a median of approximately 20 contacts per participants per day. Overall, 25% of the contacts involved a ward assistant, 23% a nurse, 22% a patient, 22% a caregiver, and 8% a physician. The majority of contacts were of brief duration, but long and frequent contacts especially between patients and caregivers were also found. In the setting under study, caregivers do not represent a significant potential for infection spread to a large number of individuals, as their interactions mainly involve the corresponding patient. Nurses would deserve priority in prevention strategies due to their central role in the potential propagation paths of infections. CONCLUSIONS: Our study shows the feasibility of accurate and reproducible measures of the pattern of contacts in a hospital setting. The obtained results are particularly useful for the study of the spread of respiratory infections, for monitoring critical patterns, and for setting up tailored prevention strategies. Proximity-sensing technology should be considered as a valuable tool for measuring such patterns and evaluating nosocomial prevention strategies in specific settings.


Subject(s)
Cross Infection/transmission , Hospitals, Pediatric/statistics & numerical data , Interpersonal Relations , Monitoring, Ambulatory/instrumentation , Personal Space , Radio Frequency Identification Device , Adolescent , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Caregivers/statistics & numerical data , Child , Child, Preschool , Cross Infection/epidemiology , Face , Feasibility Studies , Humans , Infant , Length of Stay/statistics & numerical data , Models, Biological , Radio Frequency Identification Device/statistics & numerical data
5.
BMC Infect Dis ; 11: 37, 2011 Feb 02.
Article in English | MEDLINE | ID: mdl-21288355

ABSTRACT

BACKGROUND: Computational models play an increasingly important role in the assessment and control of public health crises, as demonstrated during the 2009 H1N1 influenza pandemic. Much research has been done in recent years in the development of sophisticated data-driven models for realistic computer-based simulations of infectious disease spreading. However, only a few computational tools are presently available for assessing scenarios, predicting epidemic evolutions, and managing health emergencies that can benefit a broad audience of users including policy makers and health institutions. RESULTS: We present "GLEaMviz", a publicly available software system that simulates the spread of emerging human-to-human infectious diseases across the world. The GLEaMviz tool comprises three components: the client application, the proxy middleware, and the simulation engine. The latter two components constitute the GLEaMviz server. The simulation engine leverages on the Global Epidemic and Mobility (GLEaM) framework, a stochastic computational scheme that integrates worldwide high-resolution demographic and mobility data to simulate disease spread on the global scale. The GLEaMviz design aims at maximizing flexibility in defining the disease compartmental model and configuring the simulation scenario; it allows the user to set a variety of parameters including: compartment-specific features, transition values, and environmental effects. The output is a dynamic map and a corresponding set of charts that quantitatively describe the geo-temporal evolution of the disease. The software is designed as a client-server system. The multi-platform client, which can be installed on the user's local machine, is used to set up simulations that will be executed on the server, thus avoiding specific requirements for large computational capabilities on the user side. CONCLUSIONS: The user-friendly graphical interface of the GLEaMviz tool, along with its high level of detail and the realism of its embedded modeling approach, opens up the platform to simulate realistic epidemic scenarios. These features make the GLEaMviz computational tool a convenient teaching/training tool as well as a first step toward the development of a computational tool aimed at facilitating the use and exploitation of computational models for the policy making and scenario analysis of infectious disease outbreaks.


Subject(s)
Communicable Disease Control/methods , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Disease Transmission, Infectious/statistics & numerical data , Pandemics , Software , Computer Simulation , Humans , Models, Statistical
6.
J Theor Biol ; 271(1): 166-80, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21130777

ABSTRACT

The availability of new data sources on human mobility is opening new avenues for investigating the interplay of social networks, human mobility and dynamical processes such as epidemic spreading. Here we analyze data on the time-resolved face-to-face proximity of individuals in large-scale real-world scenarios. We compare two settings with very different properties, a scientific conference and a long-running museum exhibition. We track the behavioral networks of face-to-face proximity, and characterize them from both a static and a dynamic point of view, exposing differences and similarities. We use our data to investigate the dynamics of a susceptible-infected model for epidemic spreading that unfolds on the dynamical networks of human proximity. The spreading patterns are markedly different for the conference and the museum case, and they are strongly impacted by the causal structure of the network data. A deeper study of the spreading paths shows that the mere knowledge of static aggregated networks would lead to erroneous conclusions about the transmission paths on the dynamical networks.


Subject(s)
Communicable Diseases/transmission , Models, Biological , Social Behavior , Communicable Diseases/epidemiology , Epidemics , Humans , Incidence , Interpersonal Relations , Population Dynamics
7.
PLoS One ; 5(7): e11596, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20657651

ABSTRACT

BACKGROUND: Digital networks, mobile devices, and the possibility of mining the ever-increasing amount of digital traces that we leave behind in our daily activities are changing the way we can approach the study of human and social interactions. Large-scale datasets, however, are mostly available for collective and statistical behaviors, at coarse granularities, while high-resolution data on person-to-person interactions are generally limited to relatively small groups of individuals. Here we present a scalable experimental framework for gathering real-time data resolving face-to-face social interactions with tunable spatial and temporal granularities. METHODS AND FINDINGS: We use active Radio Frequency Identification (RFID) devices that assess mutual proximity in a distributed fashion by exchanging low-power radio packets. We analyze the dynamics of person-to-person interaction networks obtained in three high-resolution experiments carried out at different orders of magnitude in community size. The data sets exhibit common statistical properties and lack of a characteristic time scale from 20 seconds to several hours. The association between the number of connections and their duration shows an interesting super-linear behavior, which indicates the possibility of defining super-connectors both in the number and intensity of connections. CONCLUSIONS: Taking advantage of scalability and resolution, this experimental framework allows the monitoring of social interactions, uncovering similarities in the way individuals interact in different contexts, and identifying patterns of super-connector behavior in the community. These results could impact our understanding of all phenomena driven by face-to-face interactions, such as the spreading of transmissible infectious diseases and information.


Subject(s)
Radio Frequency Identification Device , Humans , Interpersonal Relations
8.
PLoS Curr ; 1: RRN1129, 2009 Nov 11.
Article in English | MEDLINE | ID: mdl-20029667

ABSTRACT

Determining the number of cases in an epidemic is fundamental to properly evaluate several disease features of high relevance for public health policies such as mortality, morbidity or hospitalization rates. Surveillance efforts are however incomplete especially at the early stage of an outbreak due to the ongoing learning process about the disease characteristics. An example of this is represented by the number of H1N1 influenza cases in Mexico during the first months of the current pandemic. Several estimates using backtrack calculation based on imported cases from Mexico in other countries point out that the actual number of cases was likely orders of magnitude larger than the number of confirmed cases. Realistic computational models fed with the best available estimates of the basic disease parameters can provide an ab-initio calculation of the number of cases in Mexico as other countries. Here we use the Global Epidemic and Mobility (GLEaM) model to obtain estimates of the size of the epidemic in Mexico as well as of imported cases at the end of April and beginning of May. We find that the reference range for the number of cases in Mexico on April 30th is 121,000 to 1,394,000 in good agreement with the recent estimates by Lipsitch et al. [M. Lipsitch, PloS One 4:e6895 (2009)]. The number of imported cases from Mexico in several countries is found to be in good agreement with the surveillance data.

9.
PLoS Curr ; 1: RRN1133, 2009 Dec 07.
Article in English | MEDLINE | ID: mdl-20029670

ABSTRACT

While the H1N1 pandemic is reaching high levels of influenza activity in the Northern Hemisphere, the attention focuses on the ability of national health systems to respond to the expected massive influx of additional patients. Given the limited capacity of health care providers and hospitals and the limited supplies of antibiotics, it is important to predict the potential demand on critical care to assist planning for the management of resources and plan for additional stockpiling. We develop a disease model that considers the development of influenza-associated complications and incorporate it into a global epidemic model to assess the expected surge in critical care demands due to viral and bacterial pneumonia. Based on the most recent estimates of complication rates, we predict the expected peak number of intensive care unit beds and the stockpile of antibiotic courses needed for the current pandemic wave. The effects of dynamic vaccination campaigns, and of variations of the relative proportion of bacterial co-infection in complications and different length of staying in the intensive care unit are explored.

10.
BMC Med ; 7: 45, 2009 Sep 10.
Article in English | MEDLINE | ID: mdl-19744314

ABSTRACT

BACKGROUND: On 11 June the World Health Organization officially raised the phase of pandemic alert (with regard to the new H1N1 influenza strain) to level 6. As of 19 July, 137,232 cases of the H1N1 influenza strain have been officially confirmed in 142 different countries, and the pandemic unfolding in the Southern hemisphere is now under scrutiny to gain insights about the next winter wave in the Northern hemisphere. A major challenge is pre-emptied by the need to estimate the transmission potential of the virus and to assess its dependence on seasonality aspects in order to be able to use numerical models capable of projecting the spatiotemporal pattern of the pandemic. METHODS: In the present work, we use a global structured metapopulation model integrating mobility and transportation data worldwide. The model considers data on 3,362 subpopulations in 220 different countries and individual mobility across them. The model generates stochastic realizations of the epidemic evolution worldwide considering 6 billion individuals, from which we can gather information such as prevalence, morbidity, number of secondary cases and number and date of imported cases for each subpopulation, all with a time resolution of 1 day. In order to estimate the transmission potential and the relevant model parameters we used the data on the chronology of the 2009 novel influenza A(H1N1). The method is based on the maximum likelihood analysis of the arrival time distribution generated by the model in 12 countries seeded by Mexico by using 1 million computationally simulated epidemics. An extended chronology including 93 countries worldwide seeded before 18 June was used to ascertain the seasonality effects. RESULTS: We found the best estimate R0 = 1.75 (95% confidence interval (CI) 1.64 to 1.88) for the basic reproductive number. Correlation analysis allows the selection of the most probable seasonal behavior based on the observed pattern, leading to the identification of plausible scenarios for the future unfolding of the pandemic and the estimate of pandemic activity peaks in the different hemispheres. We provide estimates for the number of hospitalizations and the attack rate for the next wave as well as an extensive sensitivity analysis on the disease parameter values. We also studied the effect of systematic therapeutic use of antiviral drugs on the epidemic timeline. CONCLUSION: The analysis shows the potential for an early epidemic peak occurring in October/November in the Northern hemisphere, likely before large-scale vaccination campaigns could be carried out. The baseline results refer to a worst-case scenario in which additional mitigation policies are not considered. We suggest that the planning of additional mitigation policies such as systematic antiviral treatments might be the key to delay the activity peak in order to restore the effectiveness of the vaccination programs.


Subject(s)
Disease Outbreaks , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/transmission , Antiviral Agents/therapeutic use , Basic Reproduction Number , Computer Simulation , Human Activities , Humans , Influenza, Human/drug therapy , Influenza, Human/virology , Locomotion , Models, Statistical , Monte Carlo Method , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...