Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(23): 9862-9873, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38805233

ABSTRACT

Group 4 Lewis acids are well-known catalysts and precursors for (non-aqueous) sol-gel chemistry. Titanium, zirconium and hafnium halides, and alkoxy halides are precursors for the controlled synthesis of nanocrystals, often in the presence of Lewis base. Here, we investigate the interaction of Lewis bases with the tetrahalides (MX4, X = Cl, Br) and metal alkoxy halides (MXx(OR)4-x, x = 1-3, R = OiPr, OtBu). The tetrahalides yield the expected Lewis acid-base adducts MX4L2 (L = tetrahydrofuran or phosphine oxide). The mixed alkoxy halides react with Lewis bases in a more complex way. 31P NMR spectroscopy reveals that excess of phosphine oxide yields predominantly the complexation product, while a (sub)stoichiometric amount of phosphine oxide causes disproportionation of the MXx(OR)4-x species into MXx+1(OR)3-x and MXx-1(OR)5-x. The combination of complexation and disproportionation yields an atypical Job plot. In the case of zirconium isopropoxy chlorides, we fitted the concentration of all observed species and extracted thermodynamic descriptors from the Job plot. The complexation equilibrium constant decreases in the series: ZrCl3(OiPr) > ZrCl2(OiPr)2 ≫ ZrCl(OiPr)3, while the disproportionation equilibrium constant follows the opposite trend. Using calculations at the DFT level of theory, we show that disproportionation is driven by the more energetically favorable Lewis acid-base complex formed with the more acidic species. We also gain more insight into the isomerism of the complexes. The disproportionation reaction turns out to be a general phenomenon, for titanium, zirconium and hafnium, for chlorides and bromides, and for isopropoxides and tert-butoxides.

2.
J Am Chem Soc ; 146(15): 10723-10734, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588404

ABSTRACT

Nonaqueous sol-gel syntheses have been used to make many types of metal oxide nanocrystals. According to the current paradigm, nonaqueous syntheses have slow kinetics, thus favoring the thermodynamic (crystalline) product. Here we investigate the synthesis of hafnium (and zirconium) oxide nanocrystals from the metal chloride in benzyl alcohol. We follow the transition from precursor to nanocrystal through a combination of rheology, EXAFS, NMR, TEM, and X-ray total scattering (PDF analysis). Upon dissolving the metal chloride precursor, the exchange of chloride ligands for benzylalkoxide liberates HCl. The latter catalyzes the etherification of benzyl alcohol, eliminating water. During the temperature ramp to the reaction temperature (220 °C), sufficient water is produced to turn the reaction mixture into a macroscopic gel. Rheological analysis shows a network consisting of strong interactions with temperature-dependent restructuring. After a few minutes at the reaction temperature, crystalline particles emerge from the gel, and nucleation and growth are complete after 30 min. In contrast, 4 h are required to obtain the highest isolated yield, which we attribute to the slow in situ formation of water (the extraction solvent). We used our mechanistic insights to optimize the synthesis, achieving high isolated yields with a reduced reaction time. Our results oppose the idea that nonaqueous sol-gel syntheses necessarily form crystalline products in one step, without a transient, amorphous gel state.

3.
Chem Sci ; 14(3): 573-585, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36741516

ABSTRACT

Metal oxo clusters of the type M6O4(OH)4(OOCR)12 (M = Zr or Hf) are valuable building blocks for materials science. Here, we synthesize a series of zirconium and hafnium oxo clusters with ligands that are typically used to stabilize oxide nanocrystals (fatty acids with long and/or branched chains). The fatty acid capped oxo clusters have a high solubility but do not crystallize, precluding traditional purification and single-crystal XRD analysis. We thus develop alternative purification strategies and we use X-ray total scattering and Pair Distribution Function (PDF) analysis as our main method to elucidate the structure of the cluster core. We identify the correct structure from a series of possible clusters (Zr3, Zr4, Zr6, Zr12, Zr10, and Zr26). Excellent refinements are only obtained when the ligands are part of the structure model. Further evidence for the cluster composition is provided by nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), and mass spectrometry (MS). We find that hydrogen bonded carboxylic acid is an intrinsic part of the oxo cluster. Using our analytical tools, we elucidate the conversion from a Zr6 monomer to a Zr12 dimer (and vice versa), induced by carboxylate ligand exchange. Finally, we compare the catalytic performance of Zr12-oleate clusters with oleate capped, 5.5 nm zirconium oxide nanocrystals in the esterification of oleic acid with ethanol. The oxo clusters present a five times higher reaction rate, due to their higher surface area. Since the oxo clusters are the lower limit of downscaling oxide nanocrystals, we present them as appealing catalytic materials, and as atomically precise model systems. In addition, the lessons learned regarding PDF analysis are applicable to other areas of cluster science as well, from semiconductor and metal clusters, to polyoxometalates.

5.
Angew Chem Int Ed Engl ; 61(31): e202207013, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35612297

ABSTRACT

The precursor conversion chemistry and surface chemistry of Cu3 N and Cu3 PdN nanocrystals are unknown or contested. Here, we first obtain phase-pure, colloidally stable nanocubes. Second, we elucidate the pathway by which copper(II) nitrate and oleylamine form Cu3 N. We find that oleylamine is both a reductant and a nitrogen source. Oleylamine is oxidized by nitrate to a primary aldimine, which reacts further with excess oleylamine to a secondary aldimine, eliminating ammonia. Ammonia reacts with CuI to form Cu3 N. Third, we investigated the surface chemistry and find a mixed ligand shell of aliphatic amines and carboxylates (formed in situ). While the carboxylates appear tightly bound, the amines are easily desorbed from the surface. Finally, we show that doping with palladium decreases the band gap and the material becomes semi-metallic. These results bring insight into the chemistry of metal nitrides and might help the development of other metal nitride nanocrystals.

6.
JACS Au ; 2(4): 827-838, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35557760

ABSTRACT

One can nowadays readily generate monodisperse colloidal nanocrystals, but a retrosynthetic analysis is still not possible since the underlying chemistry is often poorly understood. Here, we provide insight into the reaction mechanism of colloidal zirconia and hafnia nanocrystals synthesized from metal chloride and metal isopropoxide. We identify the active precursor species in the reaction mixture through a combination of nuclear magnetic resonance spectroscopy (NMR), density functional theory (DFT) calculations, and pair distribution function (PDF) analysis. We gain insight into the interaction of the surfactant, tri-n-octylphosphine oxide (TOPO), and the different precursors. Interestingly, we identify a peculiar X-type ligand redistribution mechanism that can be steered by the relative amount of Lewis base (L-type). We further monitor how the reaction mixture decomposes using solution NMR and gas chromatography, and we find that ZrCl4 is formed as a by-product of the reaction, limiting the reaction yield. The reaction proceeds via two competing mechanisms: E1 elimination (dominating) and SN1 substitution (minor). Using this new mechanistic insight, we adapted the synthesis to optimize the yield and gain control over nanocrystal size. These insights will allow the rational design and synthesis of complex oxide nanocrystals.

7.
Chem Rev ; 122(11): 10538-10572, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35467844

ABSTRACT

We review the nonaqueous precursor chemistry of the group 4 metals to gain insight into the formation of their oxo clusters and colloidal oxide nanocrystals. We first describe the properties and structures of titanium, zirconium, and hafnium oxides. Second, we introduce the different precursors that are used in the synthesis of oxo clusters and oxide nanocrystals. We review the structures of group 4 metal halides and alkoxides and their reactivity toward alcohols, carboxylic acids, etc. Third, we discuss fully condensed and atomically precise metal oxo clusters that could serve as nanocrystal models. By comparing the reaction conditions and reagents, we provide insight into the relationship between the cluster structure and the nature of the carboxylate capping ligands. We also briefly discuss the use of oxo clusters. Finally, we review the nonaqueous synthesis of group 4 oxide nanocrystals, including both surfactant-free and surfactant-assisted syntheses. We focus on their precursor chemistry and surface chemistry. By putting these results together, we connect the dots and obtain more insight into the fascinating chemistry of the group 4 metals. At the same time, we also identify gaps in our knowledge and thus areas for future research.


Subject(s)
Metal Nanoparticles , Oxides , Metal Nanoparticles/chemistry , Metals , Oxides/chemistry
8.
Chem Commun (Camb) ; 57(38): 4694-4697, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33977984

ABSTRACT

We designed and synthesized two resorcin[4]arene scaffolds with four phosphate binding groups. The ligands effectively bind in at least a tridentate fashion at low surface coverage. The superior binding affinity is demonstrated using solution NMR spectroscopy and exceeds that of single phosphonates.

9.
JACS Au ; 1(11): 1898-1903, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-35574040

ABSTRACT

Ligands are a fundamental part of nanocrystals. They control and direct nanocrystal syntheses and provide colloidal stability. Bound ligands also affect the nanocrystals' chemical reactivity and electronic structure. Surface chemistry is thus crucial to understand nanocrystal properties and functionality. Here, we investigate the synthesis of metal oxide nanocrystals (CeO2-x , ZnO, and NiO) from metal nitrate precursors, in the presence of oleylamine ligands. Surprisingly, the nanocrystals are capped exclusively with a fatty acid instead of oleylamine. Analysis of the reaction mixtures with nuclear magnetic resonance spectroscopy revealed several reaction byproducts and intermediates that are common to the decomposition of Ce, Zn, Ni, and Zr nitrate precursors. Our evidence supports the oxidation of alkylamine and formation of a carboxylic acid, thus unraveling this counterintuitive surface chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...