Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
PLoS One ; 15(5): e0233387, 2020.
Article in English | MEDLINE | ID: mdl-32437382

ABSTRACT

Real-time reverse transcription PCR (qPCR) normalized to an internal reference gene (RG), is a frequently used method for quantifying gene expression changes in neuroscience. Although RG expression is assumed to be constant independent of physiological or experimental conditions, several studies have shown that commonly used RGs are not expressed stably. The use of unstable RGs has a profound effect on the conclusions drawn from studies on gene expression, and almost universally results in spurious estimation of target gene expression. Approaches aimed at selecting and validating RGs often make use of different statistical methods, which may lead to conflicting results. Based on published RG validation studies involving hypoxia the present study evaluates the expression of 5 candidate RGs (Actb, Pgk1, Sdha, Gapdh, Rnu6b) as a function of hypoxia exposure and hypothermic treatment in the neonatal rat cerebral cortex-in order to identify RGs that are stably expressed under these experimental conditions-using several statistical approaches that have been proposed to validate RGs. In doing so, we first analyzed RG ranking stability proposed by several widely used statistical methods and related tools, i.e. the Coefficient of Variation (CV) analysis, GeNorm, NormFinder, BestKeeper, and the ΔCt method. Using the Geometric mean rank, Pgk1 was identified as the most stable gene. Subsequently, we compared RG expression patterns between the various experimental groups. We found that these statistical methods, next to producing different rankings per se, all ranked RGs displaying significant differences in expression levels between groups as the most stable RG. As a consequence, when assessing the impact of RG selection on target gene expression quantification, substantial differences in target gene expression profiles were observed. Altogether, by assessing mRNA expression profiles within the neonatal rat brain cortex in hypoxia and hypothermia as a showcase, this study underlines the importance of further validating RGs for each individual experimental paradigm, considering the limitations of the statistical methods used for this aim.


Subject(s)
Brain/metabolism , Gene Expression Profiling/methods , Genes, Essential , Hypothermia/genetics , Hypoxia, Brain/genetics , Animals , Animals, Newborn , Gene Expression , Hypothermia/metabolism , Hypoxia, Brain/metabolism , Rats , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results
2.
Prog Neurobiol ; 168: 42-68, 2018 09.
Article in English | MEDLINE | ID: mdl-29653249

ABSTRACT

Human pluripotent stem cell (PSC) technology and direct somatic cell reprogramming have opened up a promising new avenue in the field of neuroscience. These recent advances allow researchers to obtain virtually any cell type found in the human brain, making it possible to produce and study functional neurons in laboratory conditions for both scientific and medical purposes. Although distinct approaches have shown to be successful in directing neuronal cell fate in vitro, their refinement and optimization, as well as the search for alternative approaches, remains necessary to help realize the full potential of the eventually derived neuronal populations. Furthermore, we are currently limited in the number of neuronal subtypes whose induction is fully established, and different cultivation protocols for each subtype exist, making it challenging to increase the reproducibility and decrease the variances that are observed between different protocols. In this review, we summarize the progress that has been made in generating various neuronal subtypes from PSCs and somatic cells, with special emphasis on chemically defined systems, transcription factor-mediated reprogramming and epigenetic-based approaches. We also discuss the efforts that are being made to increase the efficiency of current protocols and address the potential for the use of these cells in disease modelling, drug discovery and regenerative medicine.


Subject(s)
Cellular Reprogramming/physiology , Neurons/physiology , Pluripotent Stem Cells/physiology , Pluripotent Stem Cells/transplantation , Animals , Cell Differentiation/drug effects , Epigenomics/methods , In Vitro Techniques , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Behav Brain Res ; 353: 236-241, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29481811

ABSTRACT

BACKGROUND: Behavioral testing provides an essential approach in further developing our understanding of brain structure and function. The aim of our study was to outline a more expanded approach to cognition- and anxiety-related behavior in the rabbit. METHODS: Twenty-one 70-day old rabbits (13 female, 8 male) were exposed to open field test, dark-light box test and object recognition testing with variations in inter-trial-interval, olfactory recognition and object location testing. Independent T-tests were used to compare data by individual baseline characteristics, i.e. birth weight, weight at testing, sex, litter #, litter size. RESULTS: In the open field test, median time spent in the center was 3.64 s (0.84-41.36) for the 9 rabbits who entered the center; median distance moved in the arena was 874.42 cm (54.20-3444.83). In the dark light box test, 12 rabbits entered the light compartment. In the object recognition task, rabbits spent significantly less time exploring the familiar object compared to the novel (0.40 s [0-2.8] vs. 3.17 s [1.30-32.69]; P = 0.003) when using a 30-min inter-trial interval, as well with a 90-min inter-trial interval: 0.87 s [0-7.8] vs. 7.65 s [0-37.6] (P = 0.008). However, recognition was lost when using a 24-h inter-trial interval (time spent exploring the familiar object: 3.33 [0-10.90]; novel object:3.87 [1.15-48.53]; n.s). In the object location task and in olfactory object recognition task, median discrimination indexes were 0.69 (-1 to 1) and 0.37 (-0.38 to 0.78) respectively, higher than level expected by chance (P < 0.001). Litter size >3 during the neonatal period was associated with increased explorative behavior in the dark light box test (P = 0.046) and in the visual object recognition task (P = 0.005), whereas body weight and sex were not. CONCLUSIONS: Settings and outcome measures for multiple behavioral tests, providing reference values and considerations for future developmental studies are reported. Discrimination and memory in the rabbit appear to relate to litter characteristics, although a larger sample size is needed to confirm our findings.


Subject(s)
Exploratory Behavior , Litter Size , Recognition, Psychology , Animals , Behavior Rating Scale , Discrimination, Psychological , Female , Male , Motor Activity , Olfactory Perception , Rabbits , Research Design
4.
Neurosci Biobehav Rev ; 75: 166-182, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28161509

ABSTRACT

Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system.


Subject(s)
Asphyxia , Brain , Animals , Asphyxia Neonatorum , Female , Humans , Hypoxia-Ischemia, Brain , Infant, Premature , Pregnancy , Rats
5.
Cell Mol Life Sci ; 74(3): 509-523, 2017 02.
Article in English | MEDLINE | ID: mdl-27628303

ABSTRACT

Even though the etiology of Alzheimer's disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Brain Stem/pathology , DNA Methylation , Epigenesis, Genetic , Animals , Brain Stem/metabolism , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/pathology , Humans
6.
Transl Psychiatry ; 6(9): e885, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27598969

ABSTRACT

The current diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders are being challenged by the heterogeneity and the symptom overlap of psychiatric disorders. Therefore, a framework toward a more etiology-based classification has been initiated by the US National Institute of Mental Health, the research domain criteria project. The basic neurobiology of human psychiatric disorders is often studied in rodent models. However, the differences in outcome measurements hamper the translation of knowledge. Here, we aimed to present a translational panic model by using the same stimulus and by quantitatively comparing the same outcome measurements in rodents, healthy human subjects and panic disorder patients within one large project. We measured the behavioral-emotional and bodily response to CO2 exposure in all three samples, allowing for a reliable cross-species comparison. We show that CO2 exposure causes a robust fear response in terms of behavior in mice and panic symptom ratings in healthy volunteers and panic disorder patients. To improve comparability, we next assessed the respiratory and cardiovascular response to CO2, demonstrating corresponding respiratory and cardiovascular effects across both species. This project bridges the gap between basic and human research to improve the translation of knowledge between these disciplines. This will allow significant progress in unraveling the etiological basis of panic disorder and will be highly beneficial for refining the diagnostic categories as well as treatment strategies.


Subject(s)
Behavior, Animal/drug effects , Carbon Dioxide/pharmacology , Disease Models, Animal , Fear/drug effects , Mice , Panic Disorder/psychology , Panic/drug effects , Adolescent , Adult , Animals , Blood Pressure/drug effects , Capnography , Carbon Dioxide/adverse effects , Female , Healthy Volunteers , Heart Rate/drug effects , Humans , Male , Middle Aged , Panic Disorder/physiopathology , Young Adult
8.
Eur Neuropsychopharmacol ; 26(1): 65-77, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26653128

ABSTRACT

Growing evidence indicates that impairment of the stress response, in particular the negative feedback regulation mechanism exerted by the hypothalamo-pituitary-adrenal (HPA) axis, might be responsible for the hippocampal atrophy observed in depressed patients. Antidepressants, possibly through the activation of BDNF signaling, may enhance neuroplasticity and restore normal hippocampal functions. In this context, glucocorticoid receptor-impaired (GR-i) mice-a transgenic mouse model of reduced GR-induced negative feedback regulation of the HPA axis-were used to investigate the role of BDNF/TrkB signaling in the behavioral and neurochemical effects of the new generation antidepressant drug, agomelatine. GR-i mice exhibited marked alterations in depressive-like and anxiety-like behaviors, together with a decreased cell proliferation and altered levels of neuroplastic and epigenetic markers in the hippocampus. GR-i mice and their wild-type littermates were treated for 21 days with vehicle, agomelatine (50mg/kg/day; i.p) or the TrkB inhibitor Ana-12 (0.5mg/kg/day, i.p) alone, or in combination with agomelatine. Chronic treatment with agomelatine resulted in antidepressant-like effects in GR-i mice and reversed the deficit in hippocampal cell proliferation and some of the alterations of mRNA plasticity markers in GR-i mice. Ana-12 blocked the effect of agomelatine on motor activity as well as its ability to restore a normal hippocampal cell proliferation and expression of neurotrophic factors. Altogether, our findings indicate that agomelatine requires TrkB signaling to reverse some of the molecular and behavioral alterations caused by HPA axis impairment.


Subject(s)
Acetamides/pharmacology , Antidepressive Agents/pharmacology , Depressive Disorder/drug therapy , Hippocampus/drug effects , Receptor, trkB/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Azepines/pharmacology , Benzamides/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Cell Proliferation/drug effects , Depressive Disorder/metabolism , Depressive Disorder/pathology , Disease Models, Animal , Fear/drug effects , Fear/physiology , Hippocampus/metabolism , Hippocampus/pathology , Male , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/physiology , Receptor, trkB/antagonists & inhibitors , Receptors, Glucocorticoid/genetics , Single-Blind Method , Social Behavior
9.
Transl Psychiatry ; 5: e642, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26393488

ABSTRACT

The selective serotonin reuptake inhibitor (SSRI) fluoxetine is widely prescribed for the treatment of symptoms related to a variety of psychiatric disorders. After chronic SSRI treatment, some symptoms remediate on the long term, but the underlying mechanisms are not yet well understood. Here we studied the long-term consequences (40 days after treatment) of chronic fluoxetine exposure on genome-wide gene expression. During the treatment period, we measured body weight; and 1 week after treatment, cessation behavior in an SSRI-sensitive anxiety test was assessed. Gene expression was assessed in hippocampal tissue of adult rats using transcriptome analysis and several differentially expressed genes were validated in independent samples. Gene ontology analysis showed that upregulated genes induced by chronic fluoxetine exposure were significantly enriched for genes involved in myelination. We also investigated the expression of myelination-related genes in adult rats exposed to fluoxetine at early life and found two myelination-related genes (Transferrin (Tf) and Ciliary neurotrophic factor (Cntf)) that were downregulated by chronic fluoxetine exposure. Cntf, a neurotrophic factor involved in myelination, showed regulation in opposite direction in the adult versus neonatally fluoxetine-exposed groups. Expression of myelination-related genes correlated negatively with anxiety-like behavior in both adult and neonatally fluoxetine-exposed rats. In conclusion, our data reveal that chronic fluoxetine exposure causes on the long-term changes in expression of genes involved in myelination, a process that shapes brain connectivity and contributes to symptoms of psychiatric disorders.


Subject(s)
Behavior, Animal/drug effects , Ciliary Neurotrophic Factor/genetics , Fluoxetine/pharmacology , Hippocampus , Long Term Adverse Effects , Transferrin/genetics , Up-Regulation/drug effects , Animals , Gene Expression Profiling , Gene Expression Regulation , Hippocampus/metabolism , Hippocampus/pathology , Long Term Adverse Effects/diagnosis , Long Term Adverse Effects/etiology , Long Term Adverse Effects/metabolism , Neural Conduction/drug effects , Neural Conduction/genetics , Pharmacogenetics , Rats , Selective Serotonin Reuptake Inhibitors/pharmacology
10.
Prog Neurobiol ; 129: 58-78, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25930682

ABSTRACT

Panic attacks (PAs), the core feature of panic disorder, represent a common phenomenon in the general adult population and are associated with a considerable decrease in quality of life and high health care costs. To date, the underlying pathophysiology of PAs is not well understood. A unique feature of PAs is that they represent a rare example of a psychopathological phenomenon that can be reliably modeled in the laboratory in panic disorder patients and healthy volunteers. The most effective techniques to experimentally trigger PAs are those that acutely disturb the acid-base homeostasis in the brain: inhalation of carbon dioxide (CO2), hyperventilation, and lactate infusion. This review particularly focuses on the use of CO2 inhalation in humans and rodents as an experimental model of panic. Besides highlighting the different methodological approaches, the cardio-respiratory and the endocrine responses to CO2 inhalation are summarized. In addition, the relationships between CO2 level, changes in brain pH, the serotonergic system, and adaptive physiological and behavioral responses to CO2 exposure are presented. We aim to present an integrated psychological and neurobiological perspective. Remaining gaps in the literature and future perspectives are discussed.


Subject(s)
Brain/physiopathology , Carbon Dioxide/metabolism , Homeostasis/physiology , Panic Disorder/physiopathology , Serotonin/metabolism , Animals , Humans , Hydrogen-Ion Concentration
11.
Neuropharmacology ; 77: 120-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24067928

ABSTRACT

Phosphodiesterase type 4 inhibitors (PDE4-Is) have received increasing attention as cognition-enhancers and putative treatment strategies for Alzheimer's disease (AD). By preventing cAMP breakdown, PDE4-Is can enhance intracellular signal transduction and increase the phosphorylation of cAMP response element-binding protein (CREB) and transcription of proteins related to synaptic plasticity and associated memory formation. Unfortunately, clinical development of PDE4-Is has been seriously hampered by emetic side effects. The new isoform-specific PDE4D-I, GEBR-7b, has shown to have beneficial effects on memory at non-emetic doses. The aim of the current study was to investigate chronic cognition-enhancing effects of GEBR-7b in a mouse model of AD. To this extent, 5-month-old (5M) APPswe/PS1dE9 mice received daily subcutaneous injections with GEBR-7b (0.001 mg/kg) or vehicle for a period of 3 weeks, and were tested on affective and cognitive behavior at 7M. We demonstrated a cognition-enhancing potential in APPswe/PS1dE9 mice as their spatial memory function at 7M in the object location test was improved by prior GEBR-7b treatment. APPswe/PS1dE9 mice displayed lower levels of CREB phosphorylation, which remained unaltered after chronic GEBR-7b treatment, and higher levels of tau in the hippocampus. Hippocampal brain-derived neurotrophic factor levels and synaptic densities were not different between experimental groups and no effects were observed on hippocampal GSK3ß and tau phosphorylation or Aß levels. In conclusion, GEBR-7b can enhance spatial memory function in the APPswe/PS1dE9 mouse model of AD. Although the underlying mechanisms of its cognition-enhancing potential remain to be elucidated, PDE4D inhibition appears an interesting novel therapeutic option for cognitive deficits in AD.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Hippocampus/drug effects , Imines/pharmacology , Maze Learning/drug effects , Memory/drug effects , Morpholines/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Disease Models, Animal , Disks Large Homolog 4 Protein , Guanylate Kinases/metabolism , Hippocampus/metabolism , Imines/therapeutic use , Membrane Proteins/metabolism , Mice , Morpholines/therapeutic use , Phosphodiesterase 4 Inhibitors/therapeutic use , Phosphorylation/drug effects
12.
Eur Neuropsychopharmacol ; 24(4): 595-607, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24139910

ABSTRACT

Exposure to prenatal stress (PS) can predispose individuals to the development of psychopathology later in life. We examined the effects of unpredictable chronic mild stress (CMS) exposure during adolescence on a background of PS in male and female Sprague-Dawley rats. PS induced more anxiety-like behavior in the elevated zero maze in both sexes, an effect that was normalized by subsequent exposure to CMS. Moreover, PS was associated with increased depression-like behavior in the forced swim test in males only. Conversely, sucrose intake was increased in PS males, whilst being decreased in females when consecutively exposed to PS and CMS. Hypothalamo-pituitary-adrenal (HPA) axis reactivity was affected in males only, with higher stress-induced plasma corticosterone levels after PS. Markedly, CMS normalized the effects of PS on elevated zero maze behavior as well as basal and stress-induced plasma corticosterone secretion. At the neurochemical level, both PS and CMS induced various sex-specific alterations in serotonin (5-HT) and tryptophan hydroxylase 2 (TPH2) immunoreactivity in the dorsal raphe nucleus, hippocampus and prefrontal cortex with, in line with the behavioral observations, more profound effects in male offspring. In conclusion, these findings show that prenatal maternal stress in Sprague-Dawley rats induces various anxiety- and depression-related behavioral and neuroendocrine changes, as well as alterations in central 5-HT and TPH2 function, predominantly in male offspring. Moreover, CMS exposure partially normalized the effects of previous PS experience, suggesting that the outcome of developmental stress exposure largely depends on the environmental conditions later in life and vice versa.


Subject(s)
Allostasis , Anxiety/etiology , Depression/etiology , Disease Models, Animal , Prenatal Exposure Delayed Effects/physiopathology , Serotonergic Neurons/metabolism , Stress, Physiological , Animals , Anxiety/blood , Anxiety/prevention & control , Behavior, Animal , Depression/blood , Depression/prevention & control , Female , Hippocampus/enzymology , Hippocampus/metabolism , Hippocampus/pathology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Male , Nerve Tissue Proteins/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Prefrontal Cortex/enzymology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/psychology , Raphe Nuclei/enzymology , Raphe Nuclei/metabolism , Raphe Nuclei/pathology , Rats , Rats, Sprague-Dawley , Serotonergic Neurons/enzymology , Serotonergic Neurons/pathology , Sex Characteristics , Tryptophan Hydroxylase/metabolism
13.
J Chem Neuroanat ; 48-49: 23-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23333161

ABSTRACT

Plastic changes in the adult mammal hippocampus can be altered by many factors and perhaps the most well-documented is stress. Stress and elevated corticosterone levels have been shown to decrease hippocampal neurogenesis and decrease the complexity of CA3 pyramidal neurons. However, the extent of these changes in relation to low and moderately elevated levels of corticosterone has yet to be fully investigated. Therefore, the aim of the present study was to determine how low to moderately elevated circulating corticosterone levels affect dendritic morphology of CA3 pyramidal cells and hippocampal neurogenesis in adult male rats. To do this, three groups of adult male Wistar rats were used: (1) Sham-operated, (2) Adrenalectomized (ADX), and (3) ADX+corticosterone replacement. Primary results show that adrenalectomy, but not moderately elevated levels of corticosterone replacement, resulted in significant atrophy of CA3 pyramidal neurons. Interestingly, moderate corticosterone replacement resulted in significantly more surviving new cells in the dentate gyrus when compared to sham controls. This work shows that circulating levels of corticosterone differentially affect plasticity in the CA3 region and the dentate gyrus.


Subject(s)
Adrenalectomy , CA3 Region, Hippocampal/cytology , Corticosterone/pharmacology , Dendrites/drug effects , Hormone Replacement Therapy , Animals , Antimetabolites , Bromodeoxyuridine , CA3 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/ultrastructure , Cell Survival/drug effects , Dendrites/ultrastructure , Dentate Gyrus/cytology , Dentate Gyrus/drug effects , Drug Implants , Hippocampus/cytology , Immunohistochemistry , Male , Pyramidal Cells/drug effects , Rats , Rats, Wistar
14.
Eur Neuropsychopharmacol ; 23(10): 1226-46, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23199416

ABSTRACT

Adverse life events during pregnancy may impact upon the developing fetus, predisposing prenatally stressed offspring to the development of psychopathology. In the present study, we examined the effects of prenatal restraint stress (PS) on anxiety- and depression-related behavior in both male and female adult Sprague-Dawley rats. In addition, gene expression profiles within the hippocampus and frontal cortex (FC) were examined in order to gain more insight into the molecular mechanisms that mediate the behavioral effects of PS exposure. PS significantly increased anxiety-related behavior in male, but not female offspring. Likewise, depression-related behavior was increased in male PS rats only. Further, male PS offspring showed increased basal plasma corticosterone levels in adulthood, whereas both PS males and females had lower stress-induced corticosterone levels when compared to controls. Microarray-based profiling of the hippocampus and FC showed distinct sex-dependent changes in gene expression after PS. Biological processes and/or signal transduction cascades affected by PS included glutamatergic and GABAergic neurotransmission, mitogen-activated protein kinase (MAPK) signaling, neurotrophic factor signaling, phosphodiesterase (PDE)/ cyclic nucleotide signaling, glycogen synthase kinase 3 (GSK3) signaling, and insulin signaling. Further, the data indicated that epigenetic regulation is affected differentially in male and female PS offspring. These sex-specific alterations may, at least in part, explain the behavioral differences observed between both sexes, i.e. relative vulnerability versus resilience to PS in male versus female rats, respectively. These data reveal novel potential targets for antidepressant and mood stabilizing drug treatments including PDE inhibitors and histone deacetylase (HDAC) inhibitors.


Subject(s)
Frontal Lobe/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/metabolism , Pregnancy Complications/physiopathology , Prenatal Exposure Delayed Effects/metabolism , Stress, Physiological , Stress, Psychological/physiopathology , Animals , Anxiety/blood , Anxiety/etiology , Anxiety/metabolism , Behavior, Animal , Corticosterone/blood , Depression/blood , Depression/etiology , Depression/metabolism , Disease Susceptibility , Epigenesis, Genetic , Female , Frontal Lobe/enzymology , Gene Expression Regulation , Hippocampus/enzymology , Male , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neurons/enzymology , Neurons/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/blood , Prenatal Exposure Delayed Effects/etiology , Rats , Rats, Sprague-Dawley , Restraint, Physical , Sex Characteristics , Signal Transduction
15.
Horm Behav ; 62(1): 10-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22584108

ABSTRACT

Brain-derived neurotrophic factor (BDNF) signaling has been implicated in the onset of depression and in antidepressant efficacy, although the exact role of this neurotrophin in the pathophysiology of depression remains to be elucidated. Also, the interaction between chronic stress, which may precede depression, corticosteroids and BDNF is not fully understood. The present study aimed at investigating whether long-lasting, recurrent tethering of sows during a period of 1.5 or 4.5 years leads to enduring effects on measures that may be indicative of chronic stress, compared with animals kept in a group housing system ('loose' sows). Immediately after slaughter, the frontal cortex, dorsal and ventral hippocampus were dissected and protein levels of BDNF and its receptors were analyzed and compared with plasma cortisol levels and adrenal weights. Results indicate that tethering stress reduced BDNF protein levels in the dorsal hippocampus and the frontal cortex, but not in the ventral hippocampus. In addition, levels of TrkB, the high affinity receptor for BDNF, were increased in the dorsal hippocampus. Plasma cortisol levels and adrenal weight were increased after tethering. These stress effects on BDNF levels were more pronounced after 4.5 years of recurrent tethering and negatively correlated in particular in the frontal cortex with cortisol levels and adrenal weight. This suggests that the stress effect of tethered housing on neurotrophin levels may be mediated via cortisol. Taken together, these data indicate that recurrent tethering stress in sows over 4.5 years results in a loss of neurotrophic support by BDNF, mediated by an overactive neuroendocrine system.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Frontal Lobe/metabolism , Hippocampus/metabolism , Stress, Psychological/metabolism , Adrenal Glands/anatomy & histology , Animals , Depression/metabolism , Depression/psychology , Disease Models, Animal , Female , Hydrocortisone/blood , Receptor, trkB/analysis , Swine/metabolism , Swine/psychology
16.
Mol Psychiatry ; 17(6): 584-96, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21894152

ABSTRACT

Abnormal brain-derived neurotrophic factor (BDNF) signaling seems to have a central role in the course and development of various neurological and psychiatric disorders. In addition, positive effects of psychotropic drugs are known to activate BDNF-mediated signaling. Although the BDNF gene has been associated with several diseases, molecular mechanisms other than functional genetic variations can impact on the regulation of BDNF gene expression and lead to disturbed BDNF signaling and associated pathology. Thus, epigenetic modifications, representing key mechanisms by which environmental factors induce enduring changes in gene expression, are suspected to participate in the onset of various psychiatric disorders. More specifically, various environmental factors, particularly when occurring during development, have been claimed to produce long-lasting epigenetic changes at the BDNF gene, thereby affecting availability and function of the BDNF protein. Such stabile imprints on the BDNF gene might explain, at least in part, the delayed efficacy of treatments as well as the high degree of relapses observed in psychiatric disorders. Moreover, BDNF gene has a complex structure displaying differential exon regulation and usage, suggesting a subcellular- and brain region-specific distribution. As such, developing drugs that modify epigenetic regulation at specific BDNF exons represents a promising strategy for the treatment of psychiatric disorders. Here, we present an overview of the current literature on epigenetic modifications at the BDNF locus in psychiatric disorders and related animal models.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Epigenesis, Genetic/physiology , Gene-Environment Interaction , Mental Disorders/genetics , Mental Disorders/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain-Derived Neurotrophic Factor/genetics , Drug Delivery Systems/methods , Drug Delivery Systems/psychology , Humans , Models, Genetic
18.
Brain Behav Immun ; 25(4): 616-23, 2011 May.
Article in English | MEDLINE | ID: mdl-21172419

ABSTRACT

Recent studies have suggested that DNA methylation is implicated in age-related changes in gene expression as well as in cognition. DNA methyltransferase 3a (Dnmt3a), which catalyzes DNA methylation, is essential for memory formation and underlying changes in neuronal and synaptic plasticity. Because caloric restriction (CR) and upregulation of antioxidants have been suggested as strategies to attenuate age-related alterations in the brain, we hypothesized that both a diet restricted in calories and transgenic overexpression of normal human Cu/Zn superoxide dismutase 1 (SOD) attenuate age-related changes in Dnmt3a in the aging mouse hippocampus. For this purpose, we performed qualitative and quantitative analyses of Dnmt3a-immunoreactivity (IR) for the hippocampal dentate gyrus (DG), CA3 and CA1-2 regions in 12- and 24-month-old mice from 4 groups, i.e. (1) wild-type (WT) mice on a control diet (WT-CD), (2) SOD-CD mice, (3) WT mice on CR (WT-CR), and (4) SOD-CR. Qualitative analyses revealed two types of Dnmt3a immunoreactive cells: type I cells--present throughout all hippocampal cell layers showing moderate levels of nuclear Dnmt3a-IR, and type II cells--a subpopulation of hippocampal cells showing very intense nuclear Dnmt3a-IR, and colocalization with Bromodeoxyuridine. Quantitative analyses indicated that the age-related increase in Dnmt3a-IR within the CA3 and CA1-2 in type I cells was attenuated by CR, but not by SOD overexpression. In contrast, the density of type II Dnmt3a immunoreactive cells showed an age-related reduction, without significant effects of both CR and SOD. These changes in Dnmt3a levels in the mouse hippocampus may have a significant impact on gene expression and associated cognitive functioning.


Subject(s)
Aging/physiology , Caloric Restriction , DNA (Cytosine-5-)-Methyltransferases/metabolism , Hippocampus/enzymology , Superoxide Dismutase/metabolism , Animals , DNA Methyltransferase 3A , Energy Metabolism/physiology , Female , Gene Expression Regulation/physiology , Hippocampus/cytology , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Up-Regulation
19.
Int J Alzheimers Dis ; 20102010 Oct 05.
Article in English | MEDLINE | ID: mdl-20953364

ABSTRACT

The etiology of the sporadic form of Alzheimer's disease (AD) remains largely unknown. Recent evidence has suggested that gene-environment interactions (GxE) may play a crucial role in its development and progression. Whereas various susceptibility loci have been identified, like the apolipoprotein E4 allele, these cannot fully explain the increasing prevalence of AD observed with aging. In addition to such genetic risk factors, various environmental factors have been proposed to alter the risk of developing AD as well as to affect the rate of cognitive decline in AD patients. Nevertheless, aside from the independent effects of genetic and environmental risk factors, their synergistic participation in increasing the risk of developing AD has been sparsely investigated, even though evidence points towards such a direction. Advances in the genetic manipulation of mice, modeling various aspects of the AD pathology, have provided an excellent tool to dissect the effects of genes, environment, and their interactions. In this paper we present several environmental factors implicated in the etiology of AD that have been tested in transgenic animal models of the disease. The focus lies on the concept of GxE and its importance in a multifactorial disease like AD. Additionally, possible mediating mechanisms and future challenges are discussed.

20.
Int J Dev Neurosci ; 28(3): 277-81, 2010 May.
Article in English | MEDLINE | ID: mdl-19500660

ABSTRACT

Fetal asphyxic insults in the brain are known to be associated with developmental and neurological problems like neuromotor disorders and cognitive deficits. Little is known, however, about the long-term consequences of fetal asphyxia contributing to the development of different neurological diseases common in the adult or the aging brain. For that reason the present study aimed to investigate the long-term effects of fetal asphyxia on synaptic organization within the adult rat brain. Fetal asphyxia was induced at embryonic day 17 by 75-min clamping of the uterine and ovarian arteries. Presynaptic bouton densities and numbers were analyzed in the striatum and prefrontal cortex at the age of 19 months. A substantial decrease in presynaptic bouton density and number was observed in the striatum of fetal asphyxia rats compared to control rats, while an increase was found in the fifth layer of the prefrontal cortex. These results suggest that fetal asphyxia can have long-lasting effects on synaptic organization that might contribute to a developmental etiology of different neurological disorders and aging.


Subject(s)
Asphyxia/pathology , Corpus Striatum , Prenatal Exposure Delayed Effects/pathology , Presynaptic Terminals/pathology , Animals , Corpus Striatum/pathology , Corpus Striatum/ultrastructure , Female , Gestational Age , Humans , Pregnancy , Presynaptic Terminals/ultrastructure , Rats , Rats, Inbred Lew
SELECTION OF CITATIONS
SEARCH DETAIL
...