Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Water Health ; 22(4): 652-672, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38678420

ABSTRACT

A new type of bio-composite material is being produced from water-recovered resources such as cellulose fibres from wastewater, calcite from the drinking water softening process, and grass and reed from waterboard sites. These raw materials may be contaminated with pathogens and chemicals such as Escherichia coli, heavy metals, and resin compounds. A novel risk assessment framework is proposed here, addressing human health risks during the production of new bio-composite materials. The developed framework consists of a combination of existing risk assessment methods and is based on three main steps: hazard identification, qualitative risk mapping, and quantitative risk assessment. The HAZOP and Event Tree Analysis methodologies were used for hazard identification and risk mapping stages. Then, human health risks were quantitatively assessed using quantitative chemical risk assessment, evaluating cancer and non-cancer risk, and quantitative microbial risk assessment. The deterministic and the stochastic approaches were performed for this purpose. The contamination of raw materials may pose human health concerns, resulting in cancer risk above the threshold. Microbial risk is also above the safety threshold. Additional analysis would be significant as future research to better assess the microbial risk in biocomposite production. The framework has been effectively used for chemical and microbial risk assessment.


Subject(s)
Water Resources , Risk Assessment , Humans , Wastewater/analysis , Wastewater/chemistry , Wastewater/microbiology , Water Pollutants, Chemical/analysis
2.
Environ Sci Technol ; 58(16): 7165-7175, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38597176

ABSTRACT

Increasing wildfire frequency, a consequence of global climate change, releases incomplete combustion byproducts such as aquatic pyrogenic dissolved organic matter (DOM) and black carbon (DBC) into waters, posing a threat to water security. In August 2022, a series of severe wildfires occurred in Chongqing, China. Samples from seven locations along the Yangtze and Jialing Rivers revealed DBC, quantified by the benzene poly(carboxylic acid) (BPCA) method, comprising 9.5-19.2% of dissolved organic carbon (DOC). High concentrations of BPCA-DBC with significant polycondensation were detected near wildfire areas, likely due to atmospheric deposition driven by wind. Furthermore, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) revealed that wildfires were associated with an increase in condensed aromatics, proteins, and unsaturated hydrocarbons, along with a decrease in lignins. The condensed aromatics primarily consisted of dissolved black nitrogen (DBN), contributing to abundant high-nitrogen-containing compounds in locations highly affected by wildfires. Meanwhile, wildfires potentially induced the input of recalcitrant sulfur-containing protein-like compounds, characterized by high oxidation, aliphatic nature, saturation, and low aromaticity. Overall, this study revealed the appearance of recalcitrant DBC and dissolved organic sulfur in river waters following wildfire events, offering novel insights into the potential impacts of wildfires on water quality and environmental biogeochemistry.

3.
Environ Sci Pollut Res Int ; 31(14): 21057-21072, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38381287

ABSTRACT

The concept of circular economy, aiming at increasing the sustainability of products and services in the water and other sectors, is gaining momentum worldwide. Driven by this concept, novel bio-composite materials produced by recovering resources from different parts of the water cycle are now manufactured in The Netherlands. The new materials are used for different products such as canal bank protection elements, as an alternative to similar elements made of hardwood. As much as these new materials are appealing from the sustainability point of view, they may leach toxic substances into the aquatic environment given some of their ingredients, e.g., cellulose recovered from wastewater treatment. Therefore, a methodology for the assessment of related environmental risks is needed and it does not exist currently. This paper addresses this knowledge gap by presenting a framework for this. The framework is based on European environmental risk assessment guidelines, and it includes four key steps: (i) hazard identification, (ii) dose-response modelling, (iii) exposure assessment and (iv) risk characterisation (i.e. assessment). As part of the first step, laboratory leaching tests were carried out to evaluate the potential release of specific chemical substances such as heavy metals and resin compounds into the aquatic environment. Laboratory test results were then used as input data to evaluate the risk of potential leaching from canal bank protection elements into surface water. A deterministic model was used first to identify the chemicals exceeding the guideline threshold. Subsequently, a stochastic model was applied to evaluate the environmental risks across a range of leachate concentrations and water velocities in the canal, thereby simulating a broader spectrum of possible situations. The risk analyses were conducted for four alternative bio-composite materials made of different ingredients, two different flow conditions (stagnant water and advective flow) in two types of canals (wide ditch and primary watercourse) and for two different water levels based on season conditions (summer and winter conditions). The results obtained from leaching tests identified Cu, Mn, Zn, styrene and furfuryl alcohol as potentially troublesome chemicals. In the case of stagnant water, the absence of a flow rate increases the residence time of the chemicals in the surface water, resulting in a higher PEC/PNEC (i.e. risk) value. However, under stagnant case conditions, environmental risks for all chemicals considered turned out to be below the safety threshold. In the advective case, the existence of a flow rate, even at low velocities simulating the conditions of 'almost no flow,' contributes to increased dilution, resulting in lower PEC/PNEC ratio values. The results presented here, even though representing real-case scenarios, are only indicative as these are based on laboratory leaching tests and a number of assumptions made. Additional field tests involving collecting and analysing water and sediment samples from the canal where the canal bank protection elements are located, over a prolonged period, are required to come up with more conclusive findings.


Subject(s)
Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/analysis , Netherlands , Water/analysis , Risk Assessment
4.
Environ Sci Technol ; 58(2): 991-1009, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38166393

ABSTRACT

Micro- and nanoplastics (MNPs) are attracting increasing attention due to their persistence and potential ecological risks. This review critically summarizes the effects of photo-oxidation on the physical, chemical, and biological behaviors of MNPs in aquatic and terrestrial environments. The core of this paper explores how photo-oxidation-induced surface property changes in MNPs affect their adsorption toward contaminants, the stability and mobility of MNPs in water and porous media, as well as the transport of pollutants such as organic pollutants (OPs) and heavy metals (HMs). It then reviews the photochemical processes of MNPs with coexisting constituents, highlighting critical factors affecting the photo-oxidation of MNPs, and the contribution of MNPs to the phototransformation of other contaminants. The distinct biological effects and mechanism of aged MNPs are pointed out, in terms of the toxicity to aquatic organisms, biofilm formation, planktonic microbial growth, and soil and sediment microbial community and function. Furthermore, the research gaps and perspectives are put forward, regarding the underlying interaction mechanisms of MNPs with coexisting natural constituents and pollutants under photo-oxidation conditions, the combined effects of photo-oxidation and natural constituents on the fate of MNPs, and the microbiological effect of photoaged MNPs, especially the biotransformation of pollutants.


Subject(s)
Environmental Pollutants , Microbiota , Water Pollutants, Chemical , Microplastics , Adsorption , Oxidation-Reduction , Plastics
5.
Sci Total Environ ; 903: 166520, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37619740

ABSTRACT

Resource recovery solutions can reduce the water sector's resource use intensity. With many such solutions being proposed, an assessment method for effective decision-making is needed. The water sector predominantly deals with biogeochemical resources (e.g., nitrogen) that are different from technical resources (e.g., industrial coagulants) in three ways: (1) they move through the environment in natural cycles; (2) they fulfil different human and environmental functions; and (3) they are subject to substantial environmental losses. Whilst several circularity assessment methods exist for technical resources, biogeochemical resources have received less attention. To address this, a well-established material circularity indicator (MCI) method is modified. This is done by redefining the terms: restoration, regeneration, and linear flows to create a new circularity assessment approach. The new approach is demonstrated in a real-life case study involving treated wastewater (TW) fertigation. The new approach reveals that using the original MCI method underestimates the circularity of resource recovery solutions involving biogeochemical resources. This is because, in the original MCI method, only the flows that are reused/recycled for human functions can be considered circular, whereas, in the new approach, one also considers flows such as N2 emission and groundwater infiltration as circular flows. Even though these may not be reuse/recycle type flows, they still contribute towards future resource availability and, thus, towards sustainability. The modified assessment method shows that TW fertigation can significantly improve nitrogen and water circularity. However, careful planning of the fertigation schedule is essential since increasing fertigation frequency leads to lower water but higher nitrogen circularity. Additionally, collecting drainage water for reuse can improve nitrogen circularity. In conclusion, using the modified MCI approach, circularity can be assessed in a manner that is better aligned with sustainability.

6.
Water Res ; 241: 120143, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37276656

ABSTRACT

Biofilm detachment contributes to water quality deterioration. However, the contributions of biofilm detachment from different pipes have not been quantified or compared. Following the introduction of partial reverse osmosis (RO) in drinking water production, this study analyzed particles at customers' ends and tracked their origins to water distribution mains and service lines. For doing so, filter bags were installed in front of water meters to capture upstream detached particles, while biofilm from water main and service line were sampled by cutting pipe specimens. The results showed that elemental concentrations of the biofilm in mains were higher than those of service lines (54.3-268.5 vs. 27.1-44.4 µg/cm2), both dominated by Ca. Differently, filter bags were dominated by Fe/Mn (77.5-98.1%). After introducing RO, Ca significantly decreased in biofilms of mains but not service lines, but the released Fe/Mn rather than Ca arrived at customers' ends. The ATP concentrations of service lines were higher than mains, which decreased on mains but increased in service lines after introducing RO. For the core ASVs, 13/24 were shared by service lines (17), mains (21), and filter bags (17), which were assigned mainly to Nitrospira spp., Methylomagnum spp., Methylocytis spp., and IheB2-23 spp. According to source tracking results, service lines contributed more than mains to the particulate material collected by filter bags (57.6 ± 13.2% vs. 13.0 ± 11.6%). To the best of our knowledge, the present study provides the first evidence of service lines' direct and quantitative contributions to potential water quality deterioration at customers' ends. This highlights the need for the appropriate management of long-neglected service line pipes, e.g., regarding material selection, length optimization, and proper regulation.


Subject(s)
Drinking Water , Water Quality , Water Supply , Water Microbiology , Bacteria , Biofilms
7.
Sci Total Environ ; 890: 164248, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37201855

ABSTRACT

The illicit connection of sewage pipes to stormwater pipes commonly occurs in urban stormwater systems. This brings problems that sewage might be directly discharges into natural water and even drinking water sources without treatment, posing risks to ecological safety. Sewage contains various unknown dissolved organic matter (DOM), which could react with disinfectants and lead to the formation of carcinogenic disinfection byproducts (DBPs). Thus, understanding the impacts of illicit connections on downstream water quality is of significance. This study firstly investigated the characteristics of DOM using fluorescence spectroscopy and the formation of DBPs after chlorination in an urban stormwater drainage system in the case of illicit connections. The results found that the concentrations of dissolved organic carbon and dissolved organic nitrogen ranged from 2.6 to 14.9 mg/L and from 1.8 to 12.6 mg/L, respectively, with the highest levels occurring at the illicit connection points. Concerning DBP precursors, pipe illicit connections introduced considerable precursors of highly toxic haloacetaldehydes and haloacetonitriles into the stormwater pipes. Furthermore, illicit connections introduced more contents of tyrosine-like and tryptophan-like aromatic proteins, which may be related to foods, nutrients, personal care products, etc. in the untreated sewage. This indicated that the urban stormwater drainage system was a significant input source of DOM and DBP precursors to natural water. The results of this study are of great significance for protecting the security of water sources and promoting the sustainability of urban water environment.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Dissolved Organic Matter , Sewage , Water Purification/methods , Water Pollutants, Chemical/analysis , Disinfectants/chemistry , Disinfection , Halogenation
8.
Water Res ; 237: 119994, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37116371

ABSTRACT

Slow Sand Filtration is popular in drinking water treatment for the removal of a wide range of contaminants (e.g., particles, organic matter, and microorganisms). The Schmutzdecke in slow sand filters (SSFs) is known to be essential for pathogen removal, however, this layer is also responsible for increased head loss. Since the role of deeper layers in bacteria and virus removal is poorly understood, this research investigated the removal of E.coli WR1 and PhiX 174 at different depths of a full-scale SSF. Filter material from top (0-5 cm), middle (5-20 cm) and deep (20-35 cm) layers of an established filter was used in an innovative experimental set-up to differentiate physical-chemical and biological removal processes. In the analysis, we distinguished between removal by biological activity, biofilm and just sand. In addition, we modelled processes by a one-side kinetic model. The different layers contributed substantially to overall log removal of E.coli WR1 (1.4-1.7 log10) and PhiX 174 (0.4-0.6 log10). For E.coli WR1, biological activity caused major removal, followed by removal within biofilm and sand, whereas, removal of PhiX 174 mainly occurred within sand, followed by biofilm and biological activity. Narrow pore radii in the top layer obtained by micro-computed tomography scanner suggested enhanced retention of bacteria due to constrained transport. The retention rates of E.coli WR1 and PhiX 174 in top layer were four and five times higher than deeper layers, respectively (kret 1.09 min-1 vs 0.26 min-1 for E.coli WR1 and kret 0.32 min-1 vs of 0.06 min-1 for PhiX 174). While this higher rate was restricted to the Schmutzdecke alone (top 5 cm), the deeper layers extend to around 1 m in full-scale filters. Therefore, the contribution of deeper layers of established SSFs to the overall log removal of bacteria and viruses is much more substantial than the Schmutzdecke.


Subject(s)
Viruses , Water Purification , X-Ray Microtomography , Silicon Dioxide/chemistry , Filtration/methods , Water Purification/methods , Bacteria , Escherichia coli
9.
Sci Total Environ ; 882: 163534, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37086988

ABSTRACT

In drinking water treatment plants (DWTPs), the widely used biological activated carbon filters (BACFs), as the last barrier before disinfection, can remove dissolved organic matter (DOM) known as precursors of disinfection by-products (DBPs). Whether phosphate addition can improve water purification and DBP control of BACFs is still controversial. This study investigated short-term and long-term effects of phosphate addition on controlling DBP formation potentials (FPs) by BACFs via column and batch experiments. The BAC columns presented good water purification performance: they removed around 50 % DOM, nearly all fulvic acid-likes and humic acid-likes as well as 5 %-70 % chlor(am)innated THM4, HAA9 and HAN4 FPs (except chloraminated THM4 FPs), which was mainly contributed by aerobic bacteria not anoxic bacteria. Phosphate addition within 7-14 days further improved removals of DOM, aromatic organics, fluorescence fractions in DOM as well as HAA9 and HAN4 FPs (especially TCAA FP and TCAN FP) to different extent. However, this improvement did not last longer, and removals of DOM, aromatic organics, two fluorescence fractions (soluble microbial byproduct-likes and humic acid-likes) and DBP FPs decreased despite long-term phosphate addition. Oxic and anoxic batch experiments showed that the positive response of water purification to short-term phosphate addition was also mainly attributed to aerobic bacteria and not to anoxic bacteria. For example, the former decreased DOM and DBP FPs, while the latter increased protein- and tryptophan-like substances as well as chloraminated THM4 FPs. Phosphate addition resulted in EPS increase in anoxic reactors and decrease in oxic reactors. These results indicated that a high dissolved oxygen in BACFs may be helpful for water purification and DBP control. Overall, short-term phosphate addition into phosphorus-limited water is beneficial for BACFs to control DBPs while long-term addition has no effect. Therefore, an intermittent phosphate addition into BACFs is suggested to control DBPs in DWTPs.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Charcoal , Phosphates , Humic Substances , Water Pollutants, Chemical/analysis , Water Purification/methods , Halogenation
10.
Environ Sci Technol ; 57(8): 3114-3123, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36787182

ABSTRACT

The level of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, pyrolysis gas chromatography-mass spectrometry was used to determine the mass concentrations of MPs and NPs with different size ranges (0.01-1, 1-50, and 50-1000 µm) across the whole treatment schemes in two WWTPs. The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 µg/L in the influent to 1.75 and 0.71 µg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. The proportions of NPs (0.01-1 µm) were 12.0-17.9 and 5.6-19.5% in plants A and B, respectively, and the removal efficiency of NPs was lower than that of MPs (>1 µm). Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01-1000 µm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs.


Subject(s)
Microplastics , Water Pollutants, Chemical , Wastewater , Plastics/analysis , Gas Chromatography-Mass Spectrometry , Pyrolysis , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid , Environmental Monitoring/methods
11.
Water Res ; 226: 119313, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36369686

ABSTRACT

The transport and fate of nanoplastics (NPs) in aquatic environments are closely associated with their colloidal stability, which is affected by aging and natural organic matter (NOM) adsorption. This study systematically investigated the combined effects of photoaging and NOM (e.g. humic acids, HA; and a model protein, bovine serum albumin, BSA) on the aggregation kinetics of NPs (polystyrene, PS) in NaCl and CaCl2 solutions. Our results showed that photoaged NPs adsorbed less HA than pristine NPs due to weaker hydrophobic and π-π interactions. In return, HA showed weaker impacts on NPs' stability after photoaging. Differently, photoaged NPs absorbed more BSA than pristine NPs due to stronger hydrogen bonding and electrostatic attraction. Thus, the inhibitory effects of BSA on the aggregation kinetics of NPs were enhanced after photoaging. Regarding the effects of NOM on the aging of NPs, our results showed that HA competed with NPs for photons and underwent photo-degradation. Subsequently, the destruction/reconstruction of adsorbed HA increased (in NaCl) or decreased (in CaCl2) the stability of NPs. Notably, light radiation-induced flocculation of BSA molecules, which wrapped and integrated NPs and lead to their destabilization. Overall, this study provided new insights into the aggregation behavior of NPs in aquatic systems, which have significant implications for predicting the transport and fate of NPs in complex real-world environments.


Subject(s)
Nanoparticles , Skin Aging , Microplastics , Calcium Chloride , Sodium Chloride , Humic Substances/analysis , Kinetics
12.
Environ Sci Technol ; 56(14): 10289-10298, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35796480

ABSTRACT

Recovering phosphorus from wastewater in more concentrated forms has potential to sustainably recirculate phosphorus from cities to agriculture. The environmental sustainability of wastewater-based phosphorus recovery processes or wastewater-derived phosphorus products can be evaluated using life cycle assessment (LCA). Many LCA studies used a process perspective to account for the impacts of integrating phosphorus recovery processes at wastewater treatment plants, while some used a product perspective to assess the impacts of producing wastewater-derived phosphorus products. We demonstrated the application of an end-user perspective by assessing life cycle environmental impacts of substituting half of the conventional phosphorus rock-based fertilizers used in three crop production systems with wastewater-derived phosphorus products from six recovery pathways (RPs). The consequential LCA results show that the substitution reduces global warming potential, eutrophication potential, ecotoxicity potential, and acidification potential of the assessed crop production systems in most RPs and scenarios. The end-user perspective introduced in this study can (i) complement with the process perspective and the product perspective to give a more holistic picture of environmental impacts along the "circular economy value chains" of wastewater-based resource recovery, (ii) enable systemwide assessment of wide uptake of wastewater-derived products, and (iii) draw attention to understanding the long-term environmental impacts of using wastewater-derived products.


Subject(s)
Phosphorus , Wastewater , Agriculture , Animals , Environment , Life Cycle Stages
13.
Sci Total Environ ; 838(Pt 1): 155936, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35580672

ABSTRACT

Biological activated carbon (BAC) filtration is usually considered to be able to decrease formation potentials (FPs) of disinfection by-products (DBPs) in drinking water treatment plant (DWTP). However, BAC filters with long running time may release microbial metabolites to effluents and therefore increase FPs of nitrogenous DBPs with high toxicity. To verify this hypothesis, this study continuously tracked BAC filters in a DWTP for one year, and assessed effects of old (running time 8-9 years) and new (running time 0-13 months) BAC filters on FPs of 15 regulated and unregulated DBPs. Results revealed that dissolved organic carbon (DOC) removal was slightly higher in the new BAC than the old one. All fluorescent components of dissolved organic matter evidently declined after new BAC filtration, but fulvic acid-like and soluble microbial product-like substances increased after old BAC filtration, which could be caused by microbial leakage. Correspondingly, new BAC filter generally removed more DBP FPs than the old one. 46.5% HAA7 FPs from chlorination and 44.3% THM4 FPs from chloramination were removed by new BAC filter. However, some DBP FPs, especially HAN FPs, were poorly removed or even increased by the old BAC filter. Proteobacteria could be a main contributor for DBP precursor removal in BAC filters. Herminiimonas, most abundant genera in new BAC filter, may explain its better DOC and UV254 removal performance and lower DBP FPs, while Bradyrhizobium, most abundant genera in old BAC filter, might produce more extracellular polymeric substances and therefore increased N-DBP FPs in old BAC effluent. This study provided insight into variations of DBP FPs and microbial communities in the new and old BAC filters, and will be helpful for the optimization of DWTP design and operation for public health.


Subject(s)
Disinfectants , Running , Water Pollutants, Chemical , Water Purification , Charcoal , Disinfection/methods , Water Pollutants, Chemical/analysis , Water Purification/methods
14.
Environ Sci Technol ; 56(8): 4988-4997, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35373559

ABSTRACT

Nanoplastics (NPs) are currently considered an environmental pollutant of concern, but the actual extent of NP pollution in environmental water bodies remains unclear and there is not enough quantitative data to conduct proper risk assessments. In this study, a pretreatment method combining ultrafiltration (UF, 100 kDa) with hydrogen peroxide digestion and subsequent detection with pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) was developed and used to identify and quantify six selected NPs in surface water (SW) and groundwater (GW), including poly(vinylchloride) (PVC), poly(methyl methacrylate) (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), and poly(ethylene terephthalate) (PET). The results show that the proposed method could detect NPs in environmental water samples. Nearly all selected NPs could be detected in the surface water at all locations, while PVC, PMMA, PS, and PET NPs were frequently below the detection limit in the groundwater. PP (32.9-69.9%) and PE (21.3-44.3%) NPs were the dominant components in both surface water and groundwater, although there were significant differences in the pollution levels attributed to the filtration efficiency of riverbank, with total mass concentrations of 0.283-0.793 µg/L (SW) and 0.021-0.203 µg/L (GW). Overall, this study quantified the NPs in complex aquatic environments for the first time, filling in gaps in our knowledge about NP pollution levels and providing a useful methodology and important reference data for future research.


Subject(s)
Groundwater , Water Pollutants, Chemical , Gas Chromatography-Mass Spectrometry , Microplastics , Plastics/analysis , Polyethylene/analysis , Polymethyl Methacrylate/analysis , Polypropylenes/analysis , Polystyrenes , Polyvinyl Chloride , Pyrolysis , Water , Water Pollutants, Chemical/chemistry
15.
Sci Total Environ ; 812: 152551, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34952077

ABSTRACT

The UV/Cl2 process (also known as chlorine photolysis, which is the combination of chlorine and simultaneous irradiation of UV light) is conventionally applied at acidic mediums for drinking water treatment and further treatment of wastewater effluents for secondary reuse. This is because the quantum yield of HO• from HOCl (ϕHO•, 254 = 1.4) is greater than the one from OCl- (ϕHO•, 254 = 0.278) by approximately 5 times. Moreover, chlorine photolysis in acidic mediums also tends to have lower radical quenching rates than that of their alkaline counterparts by up to 1000 times. The aim of this research is to investigate the applicability of the UV/Cl2 process by assessing its efficacy on the removal of trimethoprim (TMP) at not only acidic to neutral conditions (pH 6-7), but also alkaline mediums (pH 8-9). At alkaline pH, free chlorine exists as OCl- and since OCl- has a higher molar absorption coefficient as compared to HOCl at higher wavelengths, there would be higher reactive chlorine species (RCS) formation and contribution. TMP removal followed pseudo-first order kinetics and depicted that a maximum fluence based constant (kf' = 0.275 cm2/mJ) was obtained using 42.25 µM (3 mg/L) of chlorine at pH 9, with an irradiation of 275 nm. At alkaline conditions, chlorine photolysis performance followed the trend of UV (275)/Cl2 > UV (265)/Cl2 > UV (310)/Cl2 > UV (254)/Cl2. RCS like Cl•, Cl2-• and ClO• contributed to the degradation of TMP. When the pH was increased from 6 to 8, contribution from hydroxyl radicals (HO• ) was decreased whilst that of RCS was increased. Application of UV (310)/Cl2 had the highest HO• generation, contributing to TMP removals up to 13% to 48% as compared to 5% to 27% in UV (254, 265, 275)/Cl2 systems at pH 6-9. Artificial neural networks modelling was found to be able to verify and predict the contribution of HO• and RCS conventionally calculated via the general kinetic equations in the UV/Cl2 system at 254, 265, 275 and 310 nm.


Subject(s)
Water Pollutants, Chemical , Water Purification , Chlorine , Kinetics , Neural Networks, Computer , Oxidation-Reduction , Trimethoprim , Ultraviolet Rays
16.
J Environ Manage ; 295: 112902, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34171775

ABSTRACT

While the burden of disease from well-studied drinking water contaminants is declining, risks from emerging chemical and microbial contaminants arise because of social, technological, demographic and climatological developments. At present, emerging chemical and microbial drinking water contaminants are not assessed in a systematic way, but reactively and incidence based. Furthermore, they are assessed separately despite similar pollution sources. As a result, risks might be addressed ineffectively. Integrated risk assessment approaches are thus needed that elucidate the uncertainties in the risk evaluation of emerging drinking water contaminants, while considering risk assessors' values. This study therefore aimed to (1) construct an assessment hierarchy for the integrated evaluation of the potential risks from emerging chemical and microbial contaminants in drinking water and (2) develop a decision support tool, based on the agreed assessment hierarchy, to quantify (uncertain) risk scores. A multi-actor approach was used to construct the assessment hierarchy, involving chemical and microbial risk assessors, drinking water experts and members of responsible authorities. The concept of value-focused thinking was applied to guide the problem-structuring and model-building process. The development of the decision support tool was done using Decisi-o-rama, an open-source Python library. With the developed decision support tool (uncertain) risk scores can be calculated for emerging chemical and microbial drinking water contaminants, which can be used for the evidence-based prioritisation of actions on emerging chemical and microbial drinking water risks. The decision support tool improves existing prioritisation approaches as it combines uncertain indicator levels with a multi-stakeholder approach and integrated the risk assessment of chemical and microbial contaminants. By applying the concept of value-focused thinking, this study addressed difficulties in evidence-based decision-making related to emerging drinking water contaminants. Suggestions to improve the model were made to guide future research in assisting policy makers to effectively protect public health from emerging drinking water risks.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Environmental Monitoring , Policy , Risk Assessment , Water Pollutants, Chemical/analysis
17.
Article in English | MEDLINE | ID: mdl-33807661

ABSTRACT

The aim of this study was to assess the health risks that may arise from the implementation of greywater reuse and rainwater harvesting for household use, especially for toilet flushing. In addition, the risk of cross connections between these systems and the drinking water system was considered. Quantitative microbial risk assessment (QMRA) is a method that uses mathematical modelling to estimate the risk of infection when exposure to pathogens happens and was used in this study to assess the health risks. The results showed that using rainwater without prior treatment for toilet flushing poses an annual infection risk from L. pneumophila at 0.64 per-person-per-year (pppy) which exceeds the Dutch standard of 10-4 pppy. The use of untreated greywater showed a risk that is below the standard. However, treatment is recommended due to the ability of P. aeruginosa to grow in the reuse system. Moreover, showering and drinking with cross-connected water has a high annual infection risk that exceeds the standard due to contact with Staphylococcus aureus and E. coli O157:H7. Several measures can be implemented to mitigate the risks such as treating the greywater and rainwater with a minimum of 5-log removal, closing the toilet lid while flushing, good design of greywater and rainwater collection systems, and rigorous plumbing installation procedures.


Subject(s)
Conservation of Water Resources , Legionella pneumophila , Escherichia coli , Humans , Risk Assessment , Water Microbiology , Water Supply
18.
Water Res ; 197: 117085, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33862394

ABSTRACT

Fluid flow through a bed of solid particles is an important process that occurs in full-scale water treatment operations. The Carman-Kozeny model remains highly popular for estimating the resistance across the bed. It is common practice to use particle shape factors in fixed bed state to match the predicted drag coefficient with experimentally obtained drag coefficients. In fluidised state, however, where the same particles are considered, this particle shape factor is usually simply omitted from the model without providing appropriate reasoning. In this research, it is shown that a shape factor is not a constant particle property but is dependent on the fluid properties as well. This dynamic shape factor for irregularly shaped grains increases from approximately 0.6 to 1.0 in fluidised state. We found that unstable packed beds in moderate up-flow conditions are pseudo-fixed and in a setting state. This results in a decreasing bed voidage and simultaneously in a decreasing drag coefficient, which seems quite contradictory. This can be explained by the collapse of local channels in the bed, leading to a more uniform flow distribution through the bed and improving the available surface for flow-through. Our experimental measurements show that the drag coefficient decreases considerably in the laminar and transition regions. This is most likely caused by particle orientation, realignment and rearrangement in particles' packing position. A thorough hydraulic analysis shows that up-flow filtration in rapid sand filters under backwash conditions causes the particle bed to collapse almost imperceptibly. In addition, an improved expression of the drag coefficient demonstrated that the Carman-Kozeny model constant, however often assumed to be constant, is in fact not constant for increasing flow rates. Furthermore, we propose a new pseudo-3D image analysis for particles with an irregular shape. In this way, we can explain the successful method using optimisation of the extended terminal sub-fluidisation wash (ETSW) filter backwashing procedure, in which turbidity and peaks in the number of particles are reduced with a positive effect on water quality.


Subject(s)
Sand , Water Purification , Filtration , Water Quality
19.
Sci Total Environ ; 770: 145344, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33515881

ABSTRACT

The high chlorine dosages in wastewater treatment plants during the COVID-19 pandemic may result in increased formation of disinfection by-products (DBPs), posing great threat to the aquatic ecosystem of the receiving water body and the public health in the downstream area. However, limited information is available on the effect of biological wastewater treatment processes on the formation of CX3R-type DBPs. This study investigated the effect of oxidation ditch (OD) and anaerobic-anoxic-oxic (AAO), two widely used biological wastewater treatment processes, on the formation of five classes of CX3R-type DBPs, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetaldehydes (HALs), haloacetonitriles (HANs) and halonitromethanes (HNMs), during chlorination. Experimental results showed that biological treatment effectively reduced the dissolved organic carbon (DOC) and UV254, while it increased the dissolved organic nitrogen (DON), and therefore the ratio of DON/DOC. In addition, increases in the contents of soluble microbial product- and humic acid-like matters, and the transformation of high molecular weight (MW) fractions in the dissolved organic matter into low MW fractions were observed after OD and AAO processes. Although biological treatment effectively decreased the formation of Cl-THMs, Cl-HAAs, Cl-HANs and Cl-HNMs, the formation of DBCM, DBAA, BDCAA, DBCAA, DCAL, TCAL and DBAN (where C = chloro, B = bromo, D = di, T = tri) all increased significantly, due to the increased formation reactivity. Moreover, biological treatment increased the ratio of bromide/DOC and bromine incorporation into THMs, HAAs and DHANs except for HALs and THANs. Different from previous studies, this study revealed that biological treatment increased the formation of some DBPs, especially brominated DBPs, despite the efficient removal of organic matters. It provides insights into the DBP risk control in wastewater treatment, particularly during the COVID-19 pandemic.

20.
Environ Res ; 194: 110648, 2021 03.
Article in English | MEDLINE | ID: mdl-33358877

ABSTRACT

Drinking water distribution systems (DWDSs) have been thoroughly studied, but the concept of thermal energy recovery from DWDSs is very new and has been conceptualized in the past few years. Cold recovery results in a temperature increase of the drinking water. Its effects on drinking water quality and biofilm development are unclear. Hence, we studied both bulk water and biofilm phases for 232 days in two parallel pilot scale distribution systems with two temperature settings after cold recovery, 25 °C and 30 °C, and compared these with a reference pilot system without cold recovery. In all three pilot distributions systems (DSs) our results showed an initial increase in biomass (ATP) in the biofilm phase, along with occurrence of primary colonizers (Betaproteobacteriales) and subsequently a decrease in biomass and an increasing relative abundance of other microbial groups (amoeba resisting groups; Xanthobacteraceae, Legionellales), including those responsible for EPS formation in biofilms (Sphingomonadaceae). The timeline for biofilm microbial development was different for the three pilot DSs: the higher the temperature, the faster the development took place. With respect to the water phase within the three pilot DSs, major microbial contributions came from the feed water (17-100%) and unkown sources (2-80%). Random contributions of biofilm (0-70%) were seen between day 7-77. During this time period six-fold higher ATP concentration (7-11 ng/l) and two-fold higher numbers of high nucleic acid cells (5.20-5.80 × 104 cells/ml) were also observed in the effluent water from all three pilot DSs, compared to the feed water. At the end of the experimental period the microbial composition of effluent water from three pilot DSs revealed no differences, except the presence of a biofilm related microbial group (Sphingomonadaceae), within all three DSs compared to the feed water. In the biofilm phase higher temperatures initiated the growth of primary colonizing bacteria but this did not lead to differences in microbial diversity and composition at the end of the experimental period. Hence, we propose that the microbiological water quality of DWDSs with cold recovery should be monitored more frequently during the first 2-3 months of operation.


Subject(s)
Drinking Water , Biofilms , Temperature , Water Microbiology , Water Quality , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...