Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cogn Neurosci ; 50: 100975, 2021 08.
Article in English | MEDLINE | ID: mdl-34139635

ABSTRACT

In order to become proficient native speakers, children have to learn the morpho-syntactic relations between distant elements in a sentence, so-called non-adjacent dependencies (NADs). Previous research suggests that NAD learning in children comprises different developmental stages, where until 2 years of age children are able to learn NADs associatively under passive listening conditions, while starting around the age of 3-4 years children fail to learn NADs during passive listening. To test whether the transition between these developmental stages occurs gradually, we tested children's NAD learning in a foreign language using event-related potentials (ERPs). We found ERP evidence of NAD learning across the ages of 1, 2 and 3 years. The amplitude of the ERP effect indexing NAD learning, however, decreased with age. These findings might indicate a gradual transition in children's ability to learn NADs associatively. Cognitively, this transition might be driven by children's increasing knowledge of their native language, hindering NAD learning in novel contexts. Neuroanatomically, maturation of the prefrontal cortex might play a crucial role, promoting top-down learning, affecting bottom-up, associative learning. In sum, our study suggests that NAD learning under passive listening conditions undergoes a gradual transition between different developmental stages during early childhood.


Subject(s)
Language , Learning , Auditory Perception , Child, Preschool , Evoked Potentials , Female , Humans , Language Development , Male
2.
Dev Cogn Neurosci ; 45: 100819, 2020 10.
Article in English | MEDLINE | ID: mdl-32828032

ABSTRACT

Non-adjacent dependencies (NADs) are important building blocks for language and extracting them from the input is a fundamental part of language acquisition. Prior event-related potential (ERP) studies revealed changes in the neural signature of NAD learning between infancy and adulthood, suggesting a developmental shift in the learning route for NADs. The present study aimed to specify which brain regions are involved in this developmental shift and whether this shift extends to NAD learning in the non-linguistic domain. In two experiments, 2- and 3-year-old German-learning children were familiarized with either Italian sentences or tone sequences containing NADs and subsequently tested with NAD violations, while functional near-infrared spectroscopy (fNIRS) data were recorded. Results showed increased hemodynamic responses related to the detection of linguistic NAD violations in the left temporal, inferior frontal, and parietal regions in 2-year-old children, but not in 3-year-old children. A different developmental trajectory was found for non-linguistic NADs, where 3-year-old, but not 2-year-old children showed evidence for the detection of non-linguistic NAD violations. These results confirm a developmental shift in the NAD learning route and point to distinct mechanisms underlying NAD learning in the linguistic and the non-linguistic domain.


Subject(s)
Child Development/physiology , Language Development , Learning/physiology , Linguistics/methods , Child, Preschool , Female , Humans , Infant , Male
3.
Top Cogn Sci ; 12(3): 843-858, 2020 07.
Article in English | MEDLINE | ID: mdl-32729673

ABSTRACT

Learning and processing natural language requires the ability to track syntactic relationships between words and phrases in a sentence, which are often separated by intervening material. These nonadjacent dependencies can be studied using artificial grammar learning paradigms and structured sequence processing tasks. These approaches have been used to demonstrate that human adults, infants and some nonhuman animals are able to detect and learn dependencies between nonadjacent elements within a sequence. However, learning nonadjacent dependencies appears to be more cognitively demanding than detecting dependencies between adjacent elements, and only occurs in certain circumstances. In this review, we discuss different types of nonadjacent dependencies in language and in artificial grammar learning experiments, and how these differences might impact learning. We summarize different types of perceptual cues that facilitate learning, by highlighting the relationship between dependent elements bringing them closer together either physically, attentionally, or perceptually. Finally, we review artificial grammar learning experiments in human adults, infants, and nonhuman animals, and discuss how similarities and differences observed across these groups can provide insights into how language is learned across development and how these language-related abilities might have evolved.


Subject(s)
Biological Evolution , Human Development , Language , Learning , Linguistics , Adult , Animals , Human Development/physiology , Humans , Infant , Learning/physiology
4.
Dev Cogn Neurosci ; 30: 23-30, 2018 04.
Article in English | MEDLINE | ID: mdl-29248823

ABSTRACT

Both social perception and temperament in young infants have been related to social functioning later in life. Previous functional Near-Infrared Spectroscopy (fNIRS) data (Lloyd-Fox et al., 2009) showed larger blood-oxygenation changes for social compared to non-social stimuli in the posterior temporal cortex of five-month-old infants. We sought to replicate and extend these findings by using fNIRS to study the neural basis of social perception in relation to infant temperament (Negative Affect) in 37 five-to-eight-month-old infants. Infants watched short videos displaying either hand and facial movements of female actors (social dynamic condition) or moving toys and machinery (non-social dynamic condition), while fNIRS data were collected over temporal brain regions. Negative Affect was measured using the Infant Behavior Questionnaire. Results showed significantly larger blood-oxygenation changes in the right posterior-temporal region in the social compared to the non-social condition. Furthermore, this differential activation was smaller in infants showing higher Negative Affect. Our results replicate those of Lloyd-Fox et al. and confirmed that five-to-eight-month-old infants show cortical specialization for social perception. Furthermore, the decreased cortical sensitivity to social stimuli in infants showing high Negative Affect may be an early biomarker for later difficulties in social interaction.


Subject(s)
Infant Behavior/physiology , Interpersonal Relations , Social Perception , Temporal Lobe/metabolism , Brain Mapping/methods , Female , Humans , Infant , Infant Behavior/psychology , Male , Movement/physiology , Photic Stimulation/methods , Random Allocation , Spectroscopy, Near-Infrared/methods
5.
J Vis Exp ; (76)2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23770665

ABSTRACT

The neurobiology of birdsong, as a model for human speech, is a pronounced area of research in behavioral neuroscience. Whereas electrophysiology and molecular approaches allow the investigation of either different stimuli on few neurons, or one stimulus in large parts of the brain, blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) allows combining both advantages, i.e. compare the neural activation induced by different stimuli in the entire brain at once. fMRI in songbirds is challenging because of the small size of their brains and because their bones and especially their skull comprise numerous air cavities, inducing important susceptibility artifacts. Gradient-echo (GE) BOLD fMRI has been successfully applied to songbirds (1-5) (for a review, see (6)). These studies focused on the primary and secondary auditory brain areas, which are regions free of susceptibility artifacts. However, because processes of interest may occur beyond these regions, whole brain BOLD fMRI is required using an MRI sequence less susceptible to these artifacts. This can be achieved by using spin-echo (SE) BOLD fMRI (7,8) . In this article, we describe how to use this technique in zebra finches (Taeniopygia guttata), which are small songbirds with a bodyweight of 15-25 g extensively studied in behavioral neurosciences of birdsong. The main topic of fMRI studies on songbirds is song perception and song learning. The auditory nature of the stimuli combined with the weak BOLD sensitivity of SE (compared to GE) based fMRI sequences makes the implementation of this technique very challenging.


Subject(s)
Acoustic Stimulation , Brain/physiology , Finches/physiology , Magnetic Resonance Imaging/methods , Vocalization, Animal/physiology , Animals
6.
PLoS One ; 8(4): e61764, 2013.
Article in English | MEDLINE | ID: mdl-23637903

ABSTRACT

Vocal learning in songbirds and humans occurs by imitation of adult vocalizations. In both groups, vocal learning includes a perceptual phase during which juveniles birds and infants memorize adult vocalizations. Despite intensive research, the neural mechanisms supporting this auditory memory are still poorly understood. The present functional MRI study demonstrates that in adult zebra finches, the right auditory midbrain nucleus responds selectively to the copied vocalizations. The selective signal is distinct from selectivity for the bird's own song and does not simply reflect acoustic differences between the stimuli. Furthermore, the amplitude of the selective signal is positively correlated with the strength of vocal learning, measured by the amount of song that experimental birds copied from the adult model. These results indicate that early sensory experience can generate a long-lasting memory trace in the auditory midbrain of songbirds that may support song learning.


Subject(s)
Auditory Perception/physiology , Mesencephalon/physiology , Songbirds/physiology , Vocalization, Animal , Acoustic Stimulation , Animals , Brain Mapping , Learning/physiology , Magnetic Resonance Imaging , Male
7.
J Physiol Paris ; 107(3): 156-69, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22960664

ABSTRACT

Songbirds provide an excellent model system exhibiting vocal learning associated with an extreme brain plasticity linked to quantifiable behavioral changes. This animal model has thus far been intensively studied using electrophysiological, histological and molecular mapping techniques. However, these approaches do not provide a global view of the brain and/or do not allow repeated measures, which are necessary to establish correlations between alterations in neural substrate and behavior. In contrast, functional Magnetic Resonance Imaging (fMRI) is a non-invasive in vivo technique which allows one (i) to study brain function in the same subject over time, and (ii) to address the entire brain at once. During the last decades, fMRI has become one of the most popular neuroimaging techniques in cognitive neuroscience for the study of brain activity during various tasks ranging from simple sensory-motor to highly cognitive tasks. By alternating various stimulation periods with resting periods during scanning, resting and task-specific regional brain activity can be determined with this technique. Despite its obvious benefits, fMRI has, until now, only been sparsely used to study cognition in non-human species such as songbirds. The Bio-Imaging Lab (University of Antwerp, Belgium) was the first to implement Blood Oxygen Level Dependent (BOLD) fMRI in songbirds - and in particular zebra finches - for the visualization of sound perception and processing in auditory and song control brain regions. The present article provides an overview of the establishment and optimization of this technique in our laboratory and of the resulting scientific findings. The introduction of fMRI in songbirds has opened new research avenues that permit experimental analysis of complex sensorimotor and cognitive processes underlying vocal communication in this animal model.


Subject(s)
Auditory Pathways/blood supply , Brain/blood supply , Brain/physiology , Magnetic Resonance Imaging , Songbirds/physiology , Acoustic Stimulation , Animals , Brain Mapping , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Oxygen/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...