Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 8: 639719, 2021.
Article in English | MEDLINE | ID: mdl-34195241

ABSTRACT

This research aims to determine whether a specific blend of phytogenic compounds (BPC) supplemented in gestating hyperprolific sow diets can promote prenatal maternal effects in terms of piglet gut function and morphology. Twenty-eight (Landrace × Yorkshire) gilts and sows (parity 0 to 7) were randomly distributed by parity number and body weight into two dietary treatments: unsupplemented Control (CON) (n = 14) or CON diet supplemented with 1 g/kg feed of BPC during gestation (n = 14). The BPC supplementation during gestation of sows downregulated the neonate piglets' jejunal genes involved in oxidation (SOD2) and nutrient transport (SLC16A1/MCT1, SLC11A2/DMT1, and SLC39A/ZIP4), while IFNG and CLDN4 related to immune response and barrier function, respectively, were upregulated (q < 0.10). In addition, the jejunal villus height and the ratio of the villus height to crypt depth tended to increase (p < 0.10), while goblet cell volume density was higher (p < 0.05) in BPC compared to CON. In conclusion, dietary supplementation of BPC in gestating diets for hyperprolific sows influences neonatal histomorphology and expression of genes related to the intestinal function and health.

2.
Molecules ; 25(4)2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32075045

ABSTRACT

Climatic changes and heat stress have become a great challenge in the livestock industry, negatively affecting, in particular, poultry feed intake and intestinal barrier malfunction. Recently, phytogenic feed additives were applied to reduce heat stress effects on animal farming. Here, we investigated the effects of ginseng extract using various in vitro and in vivo experiments. Quantitative real-time PCR, transepithelial electrical resistance measurements and survival assays under heat stress conditions were carried out in various model systems, including Caco-2 cells, Caenorhabditis elegans and jejunum samples of broilers. Under heat stress conditions, ginseng treatment lowered the expression of HSPA1A (Caco-2) and the heat shock protein genes hsp-1 and hsp-16.2 (both in C. elegans), while all three of the tested genes encoding tight junction proteins, CLDN3, OCLN and CLDN1 (Caco-2), were upregulated. In addition, we observed prolonged survival under heat stress in Caenorhabditis elegans, and a better performance of growing ginseng-fed broilers by the increased gene expression of selected heat shock and tight junction proteins. The presence of ginseng extract resulted in a reduced decrease in transepithelial resistance under heat shock conditions. Finally, LC-MS analysis was performed to quantitate the most prominent ginsenosides in the extract used for this study, being Re, Rg1, Rc, Rb2 and Rd. In conclusion, ginseng extract was found to be a suitable feed additive in animal nutrition to reduce the negative physiological effects caused by heat stress.


Subject(s)
Heat Stress Disorders/drug therapy , Heat-Shock Response/drug effects , Panax/chemistry , Plant Extracts/pharmacology , Animals , Caco-2 Cells , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Chickens , Claudin-1/genetics , Claudin-3/genetics , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/genetics , Heat Stress Disorders/genetics , Heat Stress Disorders/pathology , Heat-Shock Response/genetics , Humans , Jejunum/drug effects , Jejunum/pathology , Panax/classification , Plant Extracts/chemistry
3.
J Anim Sci ; 98(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31910258

ABSTRACT

Phytogenic actives (PA) are plant-derived natural bioactive compounds that may promote livestock health and well-being, as well as improve growth performance and production efficiency. The current study aims to evaluate their effects on sows and their offspring. Eighty-one hyperprolific sows (up to parity 7) were assigned to 3 experimental treatments. Control sows were offered a nonsupplemented diet during gestation and lactation, and treated sows were fed the control diet supplemented with 1 g/kg of a blend of PA (BPA) in lactation (L) or during gestation and lactation (GL). An evaluation was made of placental and milk maternal transfer of these BPA and colostrum-milk features, sows and piglets antioxidant status, reproductive performance (litter size), body weight (BW) changes, weaning-estrus interval, and litter performance. Finally, piglet´s jejunum gene expression was measured. The BPA supplementation during gestation (GL) increased the number of piglets born alive (P = 0.020) and reduced (P < 0.05) the newborn piglets BW, while there were no differences among treatments on the suckling (day 20) and weaned (day 7) piglets BW (P > 0.05). Dietary phytogenic volatile compounds reached GL placental fluid, and milk of L and GL sows (P < 0.05). Moreover, colostrum protein in GL and milk fat content in L and GL were increased (P < 0.05). Milk of GL showed inhibitory activity against Bacillus subtilis and Staphylococcus aureus (P < 0.05). Antioxidant status of GL sows showed an enhanced (P < 0.05) of catalase (CAT) and total antioxidant capacity levels at early gestation (day 35), whereas higher levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzymes at late gestation (day 110). Likewise, GL newborn piglets showed higher CAT levels, whereas both CAT and SOD levels in suckling piglets, as well as CAT, SOD, and GSH-Px in weaned piglets, were increased in L and GL (P < 0.05). Jejunum messenger ribonucleic acid abundance of suckling piglets in L and GL groups showed overexpression of barrier function MUC2, digestive enzyme IDO, and immune response PPARGC-α, TNF-α, TGF-ß1, and IL-10 genes (P < 0.05). In conclusion, dietary BPA supplementation in hyperprolific sows increased the litter size (born alive) and improved the composition and bioactivity of colostrum and milk, besides, modified the antioxidant status of sows and their offspring, as well as the suckling piglets gut health gene expression. Several BPA volatile compounds were prenatal and postnatal maternally transferred (placental fluid and milk).


Subject(s)
Animal Feed , Colostrum/chemistry , Dietary Supplements , Milk/chemistry , Swine/physiology , Animal Feed/analysis , Animals , Animals, Newborn/physiology , Animals, Suckling/physiology , Antioxidants/analysis , Body Fluids/chemistry , Catalase/metabolism , Colostrum/metabolism , Diet/veterinary , Female , Gene Expression , Glutathione Peroxidase/metabolism , Jejunum/enzymology , Jejunum/metabolism , Lactation/physiology , Litter Size , Milk/metabolism , Parity , Pregnancy , Weaning
4.
Eur J Nutr ; 59(2): 779-786, 2020 Mar.
Article in English | MEDLINE | ID: mdl-30863895

ABSTRACT

PURPOSE: Homocysteine (Hcy) in humans represents a blood-borne biomarker which predicts the risk of age-related diseases and mortality. Using the nematode Caenorhabditis elegans, we tested whether feeding betaine-rich sugar beet molasses affects the survival under heat stress in the presence of Hcy, in spite of a gene loss in betaine-homocysteine methyltransferase. METHODS: Knockdown of the genes relevant for remethylation or transsulfuration of Hcy was achieved by RNA interference (RNAi). Survival assay was conducted under heat stress at 37 °C and Hcy levels were determined by enzyme-linked immunosorbent assay. RESULTS: Addition of 500 mg/l betaine-rich sugar beet molasses (SBM) prevented the survival reduction that was caused by exposure to Hcy at 37 °C. Although SBM was no longer capable of reducing Hcy levels under RNAi versus homologues for 5, 10-methylenetetrahydrofolate reductase or cystathionine-ß-synthase, it still enabled the survival extension by SBM under exposure to Hcy. In contrast, RNAi for the small heat shock protein hsp-16.2 or the foxo transcription factor daf-16 both prevented the extension of survival by betaine-rich molasses in the presence of Hcy. CONCLUSIONS: Our studies demonstrate that betaine-rich SBM is able to prevent survival reduction caused by Hcy in C. elegans in dependence on hsp-16.2 and daf-16 but independent of the remethylation pathway.


Subject(s)
Betaine/pharmacology , Caenorhabditis elegans/drug effects , Homocysteine/administration & dosage , Molasses , Stress, Physiological/drug effects , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Homocysteine/adverse effects , Hot Temperature , Survival Analysis
5.
Curr Issues Intest Microbiol ; 3(1): 1-14, 2002 Mar.
Article in English | MEDLINE | ID: mdl-12022808

ABSTRACT

The intestinal microflora lives in intimate contact with its surrounding intestinal wall and the bacteria can exert beneficial or deleterious effects on the host, depending on whether they are classified as probiotics or as pathogens. The interaction is determined on one hand by characteristics of the microorganisms, and on the other hand by characteristics of the intestinal wall. Together they determine the health status of the intestine. This review describes parameters and techniques (with advantages and disadvantages) available for poultry to identify the characteristics of the intestinal health, as constituted by three components: immunity, integrity, and functionality. To investigate intestinal immunity, in situ detection of various cell populations of the immune system with specific monoclonal antibodies using immunocytochemical staining is a reliable, semi-quantitative method. In vitro assays to measure functional aspects of T lymphocytes, B lymphocytes, plasma cells, natural killer cells, macrophages, and phagocytes are applicable to intestinal wall tissue. For investigation of intestinal integrity, in situ detection of villous height and crypt depth and their ratio, and villus arrangement is still an easy, routine histological method. In addition, expression levels of specific molecules, such as E-cadherin, different growth factors, and trefoil factor, seem promising parameters. To investigate functionality of the intestine, the permeability can be measured as the rate of transport of tracer molecules across the epithelial surface. Furthermore, determination of the level of mucus secretion and its composition are a valuable tool. These parameters for immunity, integrity and functionality, or a combination thereof, are indispensable to investigate the influence of intestinal microorganisms on intestinal health.


Subject(s)
Intestinal Mucosa/immunology , Intestines/microbiology , Poultry/physiology , Animals , Bacteria/classification , Bacterial Physiological Phenomena , Cell Differentiation , Intestines/anatomy & histology , Intestines/immunology , Poultry/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...