Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38583227

ABSTRACT

OBJECTIVES: Trace amines are powerful neuromodulators influencing the release and reuptake of catecholamines. These low concentrated endogenous amines impact mood, cognition, and hormone regulation. Dysregulation of trace amines have been associated with a variety of diseases, such as schizophrenia, Parkinson's disease, migraine, depression and more. Succesfull simultaneous quantification of trace amines, their precursors and metabolites would benefit both research and patient care. Since these compounds have various functional groups and are present in biological matrices with large concentration difference, their simultaneous quantification is an analytical challenge. Our goal was to develop a highly sensitive LC-MS/MS assay to simultaneously quantify trace amines, their precursors and metabolites in plasma. METHODS: Our method is based on a simple two-step in-matrix derivatization protocol: propionic anhydride (PA) and 3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide (EDC) in combination with 2,2,2-trifluoroethylamine (TFEA) followed by online solid phase extraction combined with LC-MS/MS. Fifteen metabolites can be measured simultaneously, three precursors, eight trace amines and four metabolites. Validation of this method was performed according to international validation guidelines. The pre-analytical stability of trace amines was assessed. RESULTS: This novel method was successful in quantifying trace amines, their precursors, and metabolites in plasma. Using just 50 µl human plasma, we were able to accomplish limit of quantification for 2-phenylethylamine and N-methyl-phenylethylamine of 0.2 nmol/L and 0.1 nmol/L for tyramine and n-methyltyramine. Inter-and intra-assay imprecision was < 15 % for all analytes. Stability assessment showed susceptibility of certain trace amines e.g. 2-phenylethylamine and N-methyl-phenylethylamine to enzymatic degradation in plasma. The addition of the monoamine oxidase inhibitor pargyline to plasma prevented this enzymatic degradation. CONCLUSIONS: We developed a novel LC-MS/MS method that1) uses a new double derivatization technique, 2) is automated with online SPE, 3) uses far less sample volume then previous methods and 4) detects more components in the same sample (eight trace amines, three precursors, and four metabolites) with high specificity and selectivity. Furthermore, addition of MAO A/B inhibitor prevents degradation and guarantees more accurate quantification of trace amines.


Subject(s)
Amines , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Reproducibility of Results , Amines/blood , Chromatography, Liquid/methods , Limit of Detection , Linear Models , Solid Phase Extraction/methods
2.
Open Forum Infect Dis ; 7(9): ofaa338, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32964062

ABSTRACT

BACKGROUND: People with HIV (PWH) taking antiretroviral therapy (ART) may experience weight gain, dyslipidemia, increased risk of non-AIDS comorbidities, and long-term alteration of the gut microbiota. Both low CD4/CD8 ratio and chronic inflammation have been associated with changes in the gut microbiota of PWH. The antidiabetic drug metformin has been shown to improve gut microbiota composition while decreasing weight and inflammation in diabetes and polycystic ovary syndrome. Nevertheless, it remains unknown whether metformin may benefit PWH receiving ART, especially those with a low CD4/CD8 ratio. METHODS: In the Lilac pilot trial, we recruited 23 nondiabetic PWH receiving ART for more than 2 years with a low CD4/CD8 ratio (<0.7). Blood and stool samples were collected during study visits at baseline, after a 12-week metformin treatment, and 12 weeks after discontinuation. Microbiota composition was analyzed by 16S rDNA gene sequencing, and markers of inflammation were assessed in plasma. RESULTS: Metformin decreased weight in PWH, and weight loss was inversely correlated with plasma levels of the satiety factor GDF-15. Furthermore, metformin changed the gut microbiota composition by increasing the abundance of anti-inflammatory bacteria such as butyrate-producing species and the protective Akkermansia muciniphila. CONCLUSIONS: Our study provides the first evidence that a 12-week metformin treatment decreased weight and favored anti-inflammatory bacteria abundance in the microbiota of nondiabetic ART-treated PWH. Larger randomized placebo-controlled clinical trials with longer metformin treatment will be needed to further investigate the role of metformin in reducing inflammation and the risk of non-AIDS comorbidities in ART-treated PWH.

3.
Anal Chem ; 92(13): 9072-9078, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32484659

ABSTRACT

Plasma-free metanephrines and catecholamines are essential markers in the biochemical diagnosis and follow-up of neuroendocrine tumors and inborn errors of metabolism. However, their low circulating concentrations (in the nanomolar range) and poor fragmentation characteristics hinder facile simultaneous quantification by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Here, we present a sensitive and simple matrix derivatization procedure using propionic anhydride that enables simultaneous quantification of unconjugated l-DOPA, catecholamines, and metanephrines in plasma by LC-MS/MS. Dilution of propionic anhydride 1:4 (v/v) in acetonitrile in combination with 50 µL of plasma resulted in the highest mass spectrometric response. In plasma, derivatization resulted in stable derivatives and increased sensitivity by a factor of 4-30 compared with a previous LC-MS/MS method for measuring plasma metanephrines in our laboratory. Furthermore, propionylation increased specificity, especially for 3-methoxytyramine, by preventing interference from antihypertensive medication (ß-blockers). The method was validated according to international guidelines and correlated with a hydrophilic interaction LC-MS/MS method for measuring plasma metanephrines (R2 > 0.99) and high-performance liquid chromatography with an electrochemical detection method for measuring plasma catecholamines (R2 > 0.85). Reference intervals for l-DOPA, catecholamines, and metanephrines in n = 115 healthy individuals were established. Our work shows that analytes in the subnanomolar range in plasma can be derivatized in situ without any preceding sample extraction. The developed method shows improved sensitivity and selectivity over existing methods and enables simultaneous quantification of several classes of amines.


Subject(s)
Catecholamines/blood , Metanephrine/blood , Tandem Mass Spectrometry/methods , Catecholamines/isolation & purification , Catecholamines/standards , Chromatography, High Pressure Liquid/standards , Dopamine/analogs & derivatives , Dopamine/blood , Dopamine/isolation & purification , Dopamine/standards , Humans , Levodopa/blood , Levodopa/isolation & purification , Levodopa/standards , Limit of Detection , Metanephrine/isolation & purification , Metanephrine/standards , Reference Values , Solid Phase Extraction , Tandem Mass Spectrometry/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...