Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 402: 130807, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723727

ABSTRACT

The textile industry discharges up to 5 % of their dyes in aqueous effluents. Here, use of spent mushroom substrate (SMS) of commercial white button mushroom production and its aqueous extract, SMS tea, was assessed to remove textile dyes from water. A total of 30-90 % and 5-85 % of the dyes was removed after a 24 h incubation in SMS and SMS tea, respectively. Removal of malachite green and remazol brilliant blue R was similar in SMS and its tea. In contrast, removal of crystal violet, orange G, and rose bengal was higher in SMS, explained by sorption to SMS and by the role of non-water-extractable SMS components in discoloration. Heat-treating SMS and its tea, thereby inactivating enzymes, reduced dye removal to 8-58 % and 0-31 %, respectively, indicating that dyes are removed by both enzymatic and non-enzymatic activities. Together, SMS of white button mushroom production has high potential to treat textile-dye-polluted aqueous effluents.


Subject(s)
Agaricus , Coloring Agents , Coloring Agents/chemistry , Textiles , Biodegradation, Environmental , Color , Textile Industry , Water Pollutants, Chemical , Industrial Waste
2.
Appl Microbiol Biotechnol ; 108(1): 301, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639797

ABSTRACT

Water bodies are increasingly contaminated with a diversity of organic micropollutants (OMPs). This impacts the quality of ecosystems due to their recalcitrant nature. In this study, we assessed the removal of OMPs by spent mushroom substrate (SMS) of the white button mushroom (Agaricus bisporus) and by its aqueous tea extract. Removal of acesulfame K, antipyrine, bentazon, caffeine, carbamazepine, chloridazon, clofibric acid, and N, N-diethyl-meta-toluamide (DEET) by SMS and its tea was between 10 and 90% and 0-26%, respectively, in a 7-day period. Sorption to SMS particles was between 0 and 29%, which can thus not explain the removal difference between SMS and its tea, the latter lacking these particles. Carbamazepine was removed most efficiently by both SMS and its tea. Removal of OMPs (except caffeine) by SMS tea was not affected by heat treatment. By contrast, heat-treatment of SMS reduced OMP removal to < 10% except for carbamazepine with a removal of 90%. These results indicate that OMP removal by SMS and its tea is mediated by both enzymatic and non-enzymatic activities. The presence of copper, manganese, and iron (0.03, 0.88, and 0.33 µg L-1, respectively) as well as H2O2 (1.5 µM) in SMS tea indicated that the Fenton reaction represents (part of) the non-enzymatic activity. Indeed, the in vitro reconstituted Fenton reaction removed OMPs > 50% better than the teas. From these data it is concluded that spent mushroom substrate of the white button mushroom, which is widely available as a waste-stream, can be used to purify water from OMPs.


Subject(s)
Agaricus , Ecosystem , Caffeine , Hydrogen Peroxide , Water , Tea , Carbamazepine
3.
Membranes (Basel) ; 12(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35323764

ABSTRACT

The objectives of this study are to assess the performance of antiscalants in increasing the recovery (≥85%) of a reverse osmosis (RO) plant treating anaerobic groundwater (GW) in Kamerik (the Netherlands), and to identify scalants/foulant that may limit RO recovery. Five different commercially available antiscalants were compared on the basis of their manufacturer-recommended dose. Their ability to increase the recovery from 80% to a target of 85% was evaluated in pilot-scale measurements with anaerobic GW and in once-through lab-scale RO tests with synthetic (artificial) feedwater. A membrane autopsy was performed on the tail element(s) with decreased permeability. X-ray photoelectron spectroscopy (XPS) analysis indicated that calcium phosphate was the primary scalant causing permeability decline at 85% recovery and limiting RO recovery. The addition of antiscalant had no positive effect on RO operation and scaling prevention, since at 85% recovery, permeability of the last stage decreased with all five antiscalants, while no decrease in permeability was observed without the addition of antiscalant at 80% recovery. In addition, in lab-scale RO tests executed with synthetic feed water containing identical calcium and phosphate concentrations as the anaerobic GW, calcium phosphate scaling occurred both with and without antiscalant at 85% recovery, while at 80% recovery without antiscalant, calcium phosphate did not precipitate in the RO element. In brief, calcium phosphate appeared to be the main scalant limiting RO recovery, and antiscalants were unable to prevent calcium phosphate scaling or to achieve a recovery of 85% or higher.

4.
Water Res ; 203: 117506, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34371231

ABSTRACT

The bacterial growth potential (BGP) of drinking water is widely assessed either by flow cytometric intact cell count (BGPICC) or adenosine triphosphate (BGPATP) based methods. Combining BGPICC and BGPATP measurements has been previously applied for various types of drinking water having high to low growth potential. However, this has not been applied for water with ultra-low nutrient content, such as remineralised RO permeate. To conduct a sound comparison, conventionally treated drinking water was included in this study, which was also used as an inoculum source. BGPICC, BGPATP, intact cell-yield (YICC), and ATP-yield (YATP) were determined for conventionally treated drinking water (Tap-water) and remineralised RO permeate (RO-water). In addition, both BGPICC and BGPATP methods were used to identify the growth-limiting nutrient in each water type. The results showed that the BGPICC ratio between Tap-water/RO-water was ∼7.5, whereas the BGPATP ratio was only ∼4.5. Moreover, the YICC ratio between Tap-water/RO-water was ∼2 (9.8 ± 0.6 × 106 vs. 4.6 ± 0.8 × 106 cells/µg-C), whereas the YATP ratio was ∼1 (0.39 ± 0.12 vs. 0.42 ± 0.06 ng ATP/µg-C), resulting in a consistently higher ATP per cell in RO-water than that of Tap-water. Both BGPICC and BGPATP methods revealed that carbon was the growth-limiting nutrient in the two types of water. However, with the addition of extra carbon, phosphate limitation was detected only with the BGPICC method, whereas BGPATP was not affected, suggesting that a combination of carbon and phosphate is essential for biomass synthesis, whereas carbon is probably utilised for cellular activities other than cell synthesis when phosphate is limited. It was estimated that the intact cell-yield growing on phosphate would be 0.70 ± 0.05 × 109 cells/µg PO4-P.


Subject(s)
Drinking Water , Water Purification , Adenosine Triphosphate , Cell Count , Nutrients , Osmosis
SELECTION OF CITATIONS
SEARCH DETAIL
...