Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(35): 19327-19341, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31453592

ABSTRACT

The mechanisms of plasma in medicine are broadly attributed to plasma-derived reactive oxygen and nitrogen species (RONS). In order to exert any intracellular effects, these plasma-derived RONS must first traverse a major barrier in the cell membrane. The cell membrane lipid composition, and thereby the magnitude of this barrier, is highly variable between cells depending on type and state (e.g. it is widely accepted that healthy and cancerous cells have different membrane lipid compositions). In this study, we investigate how plasma-derived RONS interactions with lipid membrane components can potentially be exploited in the future for treatment of diseases. We couple phospholipid vesicle experiments, used as simple cell models, with molecular dynamics (MD) simulations of the lipid membrane to provide new insights into how the interplay between phospholipids and cholesterol may influence the response of healthy and diseased cell membranes to plasma-derived RONS. We focus on the (i) lipid tail saturation degree, (ii) lipid head group type, and (iii) membrane cholesterol fraction. Using encapsulated molecular probes, we study the influence of the above membrane components on the ingress of RONS into the vesicles, and subsequent DNA damage. Our results indicate that all of the above membrane components can enhance or suppress RONS uptake, depending on their relative concentration within the membrane. Further, we show that higher RONS uptake into the vesicles does not always correlate with increased DNA damage, which is attributed to ROS reactivity and lifetime. The MD simulations indicate the multifactorial chemical and physical processes at play, including (i) lipid oxidation, (ii) lipid packing, and (iii) lipid rafts formation. The methods and findings presented here provide a platform of knowledge that could be leveraged in the development of therapies relying on the action of plasma, in which the cell membrane and oxidative stress response in cells is targeted.


Subject(s)
DNA Damage , Membrane Lipids/metabolism , Reactive Oxygen Species/metabolism , Cholesterol/chemistry , Membrane Lipids/chemistry , Molecular Dynamics Simulation , Phospholipids/chemistry , Reactive Nitrogen Species/blood , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/blood , Transport Vesicles/chemistry
2.
Phys Chem Chem Phys ; 21(8): 4117-4121, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30724274

ABSTRACT

Cold atmospheric plasma in contact with solutions has many applications, but its chemistry contains many unknowns such as the undescribed reactions with solutes. By combining experiments and modelling, we report the first direct demonstration of the reaction of chloride with oxygen atoms in aqueous solutions exposed to cold plasma.

3.
Sci Rep ; 7(1): 16478, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29184131

ABSTRACT

We evaluate the anti-cancer capacity of plasma-treated PBS (pPBS), by measuring the concentrations of NO2- and H2O2 in pPBS, treated with a plasma jet, for different values of gas flow rate, gap and plasma treatment time, as well as the effect of pPBS on cancer cell cytotoxicity, for three different glioblastoma cancer cell lines, at exactly the same plasma treatment conditions. Our experiments reveal that pPBS is cytotoxic for all conditions investigated. A small variation in gap between plasma jet and liquid surface (10 mm vs 15 mm) significantly affects the chemical composition of pPBS and its anti-cancer capacity, attributed to the occurrence of discharges onto the liquid. By correlating the effect of gap, gas flow rate and plasma treatment time on the chemical composition and anti-cancer capacity of pPBS, we may conclude that H2O2 is a more important species for the anti-cancer capacity of pPBS than NO2-. We also used a 0D model, developed for plasma-liquid interactions, to elucidate the most important mechanisms for the generation of H2O2 and NO2-. Finally, we found that pPBS might be more suitable for practical applications in a clinical setting than (commonly used) plasma-activated media (PAM), because of its higher stability.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Plasma Gases/chemistry , Plasma Gases/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Nitric Oxide/chemistry , Nitric Oxide/pharmacology
4.
Sci Rep ; 7: 39526, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28059085

ABSTRACT

In recent years, the ability of cold atmospheric pressure plasmas (CAPS) to selectively induce cell death in cancer cells has been widely established. This selectivity has been assigned to the reactive oxygen and nitrogen species (RONS) created in CAPs. To provide new insights in the search for an explanation for the observed selectivity, we calculate the transfer free energy of multiple ROS across membranes containing a varying amount of cholesterol. The cholesterol fraction is investigated as a selectivity parameter because membranes of cancer cells are known to contain lower fractions of cholesterol compared to healthy cells. We find that cholesterol has a significant effect on the permeation of reactive species across a membrane. Indeed, depending on the specific reactive species, an increasing cholesterol fraction can lead to (i) an increase of the transfer free energy barrier height and width, (ii) the formation of a local free energy minimum in the center of the membrane and (iii) the creation of extra free energy barriers due to the bulky sterol rings. In the context of plasma oncology, these observations suggest that the increased ingress of RONS in cancer cells can be explained by the decreased cholesterol fraction of their cell membrane.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Lipid Bilayers/metabolism , Neoplasms/metabolism , Phospholipids/metabolism , Reactive Oxygen Species/metabolism , Animals , Cell Membrane/chemistry , Cholesterol/chemistry , Computer Simulation , Humans , Lipid Bilayers/chemistry , Models, Biological , Molecular Dynamics Simulation , Neoplasms/chemistry , Permeability , Phospholipids/chemistry , Reactive Nitrogen Species/chemistry , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/chemistry
5.
Chem Sci ; 7(1): 489-498, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-28791102

ABSTRACT

We performed molecular dynamics simulations to investigate the effect of lipid peroxidation products on the structural and dynamic properties of the cell membrane. Our simulations predict that the lipid order in a phospholipid bilayer, as a model system for the cell membrane, decreases upon addition of lipid peroxidation products. Eventually, when all phospholipids are oxidized, pore formation can occur. This will allow reactive species, such as reactive oxygen and nitrogen species (RONS), to enter the cell and cause oxidative damage to intracellular macromolecules, such as DNA or proteins. On the other hand, upon increasing the cholesterol fraction of lipid bilayers, the cell membrane order increases, eventually reaching a certain threshold, from which cholesterol is able to protect the membrane against pore formation. This finding is crucial for cancer treatment by plasma technology, producing a large number of RONS, as well as for other cancer treatment methods that cause an increase in the concentration of extracellular RONS. Indeed, cancer cells contain less cholesterol than their healthy counterparts. Thus, they will be more vulnerable to the consequences of lipid peroxidation, eventually enabling the penetration of RONS into the interior of the cell, giving rise to oxidative stress, inducing pro-apoptotic factors. This provides, for the first time, molecular level insight why plasma can selectively treat cancer cells, while leaving their healthy counterparts undamaged, as is indeed experimentally demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...