Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Endocrinol ; 175(3): 587-96, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12475370

ABSTRACT

Uptake of tri-iodothyronine (T(3)) was compared with that of thyroxine (T(4)) in the embryonic heart cell line H9c2 (2-1). These cells propagate as myoblasts and form differentiated myotubes upon reduction of the serum concentration, as indicated by a 31-fold increase in creatine kinase activity. Protein and DNA content per well were around 2-fold higher in myotubes than in myoblasts. When expressed per well, T(3) and T(4) uptake were, compared with myoblasts, 1.9- to 2-fold and 3.1- to 4-fold higher in myotubes respectively. On the other hand, the characteristics of T(3) and T(4) uptake were similar in myoblasts and myotubes. At any time-point, T(4) uptake was 2-fold higher than that of T(3), and both uptakes were energy but not Na(+) dependent. T(3) and T(4) uptake exhibited mutual inhibition in myoblasts and myotubes: 10 microM unlabeled T(3) reduced T(4) uptake by 51-60% (P<0.001), while 10 microM T(4) inhibited T(3) uptake by 48-51% (P<0.001). Furthermore, T(3) and T(4) uptake in myoblasts was dose-dependently inhibited by tryptophan (maximum inhibition around 70%; P<0.001). Exposure of the cells to T(3) or T(4) during differentiation significantly increased the fusion index (35 and 40%; P < 0.01). Finally, both myoblasts and myotubes showed a small deiodinase type I activity, while deiodinase type II activity was undetectable. In conclusion, T(3) and T(4) share a common energy-dependent transport system in H9c2(2-1) cells, that may be important for the availability of thyroid hormone during differentiation.


Subject(s)
Heart/embryology , Myoblasts, Cardiac/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Analysis of Variance , Animals , Cell Line , Embryonic Induction/physiology , Iodide Peroxidase/metabolism , Microscopy, Phase-Contrast , Rats
3.
J Endocrinol ; 173(2): 247-55, 2002 May.
Article in English | MEDLINE | ID: mdl-12010632

ABSTRACT

Cellular and nuclear uptake of [125I]tri-iodothyronine (T3) and [125I]triiodothyroacetic acid (Triac) were compared in cardiomyocytes of 2-3 day old rats, and the effect of thyroid hormone analogs on cellular T(3) uptake was measured. Cells (5-10 x 10(5) per well) were cultured in DMEM-M199 with 5% horse serum and 5% FCS. Incubations were performed for from 15 min to 24 h at 37 degrees C in the same medium, 0.5% BSA and [125I]T3 (100 pM), or [125I]Triac (240 pM). Expressed as % dose, T(3) uptake was five times Triac uptake, but expressed as fmol/pM free hormone, Triac uptake was at least 30% (P<0.001) greater than T3 uptake, whereas the relative nuclear binding of the two tracers was comparable. The 15 min uptake of [125I]T3 was competitively inhibited by 10 microM unlabeled T3 (45-52%; P<0.001) or 3,3'- diiodothyronine (T2) (52%; P<0.001), and to a smaller extent by thyroxine (T(4)) (27%; 0.05

Subject(s)
Animals, Newborn/metabolism , Myocardium/metabolism , Thyroxine/analogs & derivatives , Triiodothyronine/analogs & derivatives , Triiodothyronine/pharmacology , Animals , Cell Nucleus/metabolism , Cells, Cultured , Decamethonium Compounds , Diiodothyronines/pharmacology , Female , Iodine Radioisotopes/metabolism , Male , Myocardium/cytology , Protein Binding/drug effects , Rats , Rats, Wistar , Thyroxine/pharmacology , Triiodothyronine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...