Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mucosal Immunol ; 11(3): 654-667, 2018 05.
Article in English | MEDLINE | ID: mdl-29139478

ABSTRACT

Resident memory T cells (TRM) reside in the lung epithelium and mediate protective immunity against respiratory pathogens. Although lung CD8+ TRM have been extensively characterized, the properties of CD4+ TRM remain unclear. Here we determined the transcriptional signature of CD4+ TRM, identified by the expression of CD103, retrieved from human lung resection material. Various tissue homing molecules were specifically upregulated on CD4+ TRM, whereas expression of tissue egress and lymph node homing molecules were low. CD103+ TRM expressed low levels of T-bet, only a small portion expressed Eomesodermin (Eomes), and although the mRNA levels for Hobit were increased, protein expression was absent. On the other hand, the CD103+ TRM showed a Notch signature. CD4+CD103+ TRM constitutively expressed high transcript levels of numerous cytotoxic mediators that was functionally reflected by a fast recall response, magnitude of cytokine production, and a high degree of polyfunctionality. Interestingly, the superior cytokine production appears to be because of an accessible interferon-γ (IFNγ) locus and was partially because of rapid translation of preformed mRNA. Our studies provide a molecular understanding of the maintenance and potential function of CD4+ TRM in the human lung. Understanding the specific properties of CD4+ TRM is required to rationally improve vaccine design.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , Lung/physiology , Receptors, Notch/metabolism , Aged , Animals , Antigens, CD/metabolism , Cytotoxicity, Immunologic , Female , Gene Expression Regulation , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunologic Memory , Integrin alpha Chains/metabolism , Interferon-gamma/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Receptors, Notch/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Transcriptome
2.
Clin Microbiol Infect ; 18(9): E369-72, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22805614

ABSTRACT

Recently, the first outbreak of clonally related VIM-2 metallo-ß-lactamase (MBL)-producing Pseudomonas aeruginosa in a Dutch tertiary-care centre was described. Subsequently, a nationwide surveillance study was performed in 2010-2011, which identified the presence of VIM-2 MBL-producing P. aeruginosa in 11 different hospitals. Genotyping by multiple-locus variable-number tandem-repeat analysis (MLVA) showed that the majority of the 82 MBL-producing isolates found belonged to a single MLVA type (n = 70, 85%), identified as ST111 by multilocus sequence typing (MLST). As MBL-producing isolates cause serious infections that are difficult to treat, the presence of clonally related isolates in various hospitals throughout the Netherlands is of nationwide concern.


Subject(s)
Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/isolation & purification , beta-Lactamases/biosynthesis , Cross Infection/microbiology , Hospitals , Humans , Microbial Sensitivity Tests , Minisatellite Repeats , Multilocus Sequence Typing , Netherlands , Phenotype , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/genetics , Retrospective Studies , beta-Lactam Resistance , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...