Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 8(24): e14666, 2021 01.
Article in English | MEDLINE | ID: mdl-33369273

ABSTRACT

The health benefits of the natural polyphenol trans-resveratrol may play an important role in preventing a variety of diseases. Resveratrol has been shown to reduce blood pressure and improve metabolic diseases such as type 2 diabetes mellitus and obesity. Our previous studies examined the role of K+ channels in the vasorelaxation responses to trans-resveratrol in the rat tail artery. During these studies, we uncovered a novel transient contraction prior to the sustained relaxation effect of trans-resveratrol. Thus, the purpose of this study was to determine the role of the endothelium in these vascular contraction and relaxation responses to trans-resveratrol. We additionally sought to determine if the cis-isomer of resveratrol exerts any of the same vascular effects as the trans-isomer. The vascular responses to trans-resveratrol were examined in rat tail arteries with intact or denuded endothelium over a 2-hr period. Additionally, the vascular responses to trans- and cis-resveratrol were compared in rat tail arteries with intact endothelium. Both the transient contractile response and the persistent relaxation response to trans-resveratrol were similar in the arterial rings with intact or denuded endothelium. There was a significant correlation between the initial contraction-enhancing action of trans-resveratrol and the magnitude of the sustained relaxation for vessels with both intact and denuded endothelium. Moreover, we demonstrated that cis-resveratrol produced a significantly greater relaxation response as compared to trans-resveratrol without the initial contractile response. These data demonstrate the role of the vascular smooth muscle in the vascular responses to resveratrol and the potential clinical benefits of the cis-isomer of resveratrol as compared to the trans-isomer.


Subject(s)
Arteries/drug effects , Endothelium, Vascular/drug effects , Muscle Contraction , Resveratrol/pharmacology , Adrenergic Agonists/pharmacology , Animals , Arteries/physiology , Endothelium, Vascular/physiology , Isomerism , Male , Muscle Relaxation , Rats , Rats, Sprague-Dawley , Resveratrol/chemistry , Tail
SELECTION OF CITATIONS
SEARCH DETAIL
...