Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 173: 105540, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34864337

ABSTRACT

We examined the risk of withering syndrome (WS) rickettsia-like organism (WS-RLO) infection in sentinel red abalone (Haliotis rufescens) deployed in modules at two Southern California field sites, one adjacent to an abalone farm and one adjacent to wild abalones. WS-RLO DNA was detected in seawater near modules at the wild abalone site but not near the farm (WS-RLO DNA was detected in the farm effluent). More WS-RLO DNA was detected in tissue from abalone near the farm relative to those near wild abalones (p < 0.05). However, infection prevalence and intensity based on histology were low and similar between sites (p > 0.05) and were independent of WS-RLO DNA loads in abalone tissue and seawater. More stippled (ST)-RLO than WS-RLO were observed with more ST-RLO infections near wild abalone than near the abalone farm (p < 0.05). We demonstrate the utility of caged sentinel abalone to better understand pathogen transmission patterns in the field.


Subject(s)
Gastropoda , Animals , California , Seawater
2.
Ecology ; 99(3): 761, 2018 03.
Article in English | MEDLINE | ID: mdl-29281144

ABSTRACT

Size, growth, and density have been studied for North American Pacific coast sea urchins Strongylocentrotus purpuratus, S. droebachiensis, S. polyacanthus, Mesocentrotus (Strongylocentrotus) franciscanus, Lytechinus pictus, Centrostephanus coronatus, and Arbacia stellata by various workers at diverse sites and for varying lengths of time from 1956 to present. Numerous peer-reviewed publications have used some of these data but some data have appeared only in graduate theses or the gray literature. There also are data that have never appeared outside original data sheets. Motivation for studies has included fisheries management and environmental monitoring of sewer and power plant outfalls as well as changes associated with disease epidemics. Studies also have focused on kelp restoration, community effects of sea otters, basic sea urchin biology, and monitoring. The data sets presented here are a historical record of size, density, and growth for a common group of marine invertebrates in intertidal and nearshore environments that can be used to test hypotheses concerning future changes associated with fisheries practices, shifts of predator distributions, climate and ecosystem changes, and ocean acidification along the Pacific Coast of North America and islands of the north Pacific. No copyright restrictions apply. Please credit this paper when using the data.

3.
PLoS One ; 10(12): e0140119, 2015.
Article in English | MEDLINE | ID: mdl-26629916

ABSTRACT

Whale watching has become increasingly popular as an ecotourism activity around the globe and is beneficial for environmental education and local economies. Southern Resident killer whales (Orcinus orca) comprise an endangered population that is frequently observed by a large whale watching fleet in the inland waters of Washington state and British Columbia. One of the factors identified as a risk to recovery for the population is the effect of vessels and associated noise. An examination of the effects of vessels and associated noise on whale behavior utilized novel equipment to address limitations of previous studies. Digital acoustic recording tags (DTAGs) measured the noise levels the tagged whales received while laser positioning systems allowed collection of geo-referenced data for tagged whales and all vessels within 1000 m of the tagged whale. The objective of the current study was to compare vessel data and DTAG recordings to relate vessel traffic to the ambient noise received by tagged whales. Two analyses were conducted, one including all recording intervals, and one that excluded intervals when only the research vessel was present. For all data, significant predictors of noise levels were length (inverse relationship), number of propellers, and vessel speed, but only 15% of the variation in noise was explained by this model. When research-vessel-only intervals were excluded, vessel speed was the only significant predictor of noise levels, and explained 42% of the variation. Simple linear regressions (ignoring covariates) found that average vessel speed and number of propellers were the only significant correlates with noise levels. We conclude that vessel speed is the most important predictor of noise levels received by whales in this study. Thus, measures that reduce vessel speed in the vicinity of killer whales would reduce noise exposure in this population.


Subject(s)
Behavior, Animal , Noise , Ships , Vocalization, Animal/physiology , Animals , Environment , Whale, Killer
4.
J Anim Ecol ; 84(6): 1575-88, 2015 11.
Article in English | MEDLINE | ID: mdl-26061120

ABSTRACT

Understanding the ecological processes that underpin species distribution patterns is a fundamental goal in spatial ecology. However, developing predictive models of habitat use is challenging for species that forage in marine environments, as both predators and prey are often highly mobile and difficult to monitor. Consequently, few studies have developed resource selection functions for marine predators based directly on the abundance and distribution of their prey. We analysed contemporaneous data on the diving locations of two seabird species, the shallow-diving Peruvian Booby (Sula variegata) and deeper diving Guanay Cormorant (Phalacrocorax bougainvilliorum), and the abundance and depth distribution of their main prey, Peruvian anchoveta (Engraulis ringens). Based on this unique data set, we developed resource selection functions to test the hypothesis that the probability of seabird diving behaviour at a given location is a function of the relative abundance of prey in the upper water column. For both species, we show that the probability of diving behaviour is mostly explained by the distribution of prey at shallow depths. While the probability of diving behaviour increases sharply with prey abundance at relatively low levels of abundance, support for including abundance in addition to the depth distribution of prey is weak, suggesting that prey abundance was not a major factor determining the location of diving behaviour during the study period. The study thus highlights the importance of the depth distribution of prey for two species of seabird with different diving capabilities. The results complement previous research that points towards the importance of oceanographic processes that enhance the accessibility of prey to seabirds. The implications are that locations where prey is predictably found at accessible depths may be more important for surface foragers, such as seabirds, than locations where prey is predictably abundant. Analysis of the relative importance of abundance and accessibility is essential for the design and evaluation of effective management responses to reduced prey availability for seabirds and other top predators in marine systems.


Subject(s)
Birds/physiology , Ecosystem , Food Chain , Predatory Behavior , Animal Distribution , Animals , Diving , Female , Fishes/physiology , Male , Models, Biological , Peru , Population Density
5.
Dis Aquat Organ ; 108(3): 261-70, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24695239

ABSTRACT

Withering syndrome (WS) is a fatal disease of abalone caused by a Rickettsiales-like organism (WS-RLO). The causative agent, 'Candidatus Xenohaliotis californiensis', occurs along the eastern Pacific margin of North America in California, USA, and Baja California, Mexico. However, as infected abalones have been transported to Chile, China, Taiwan, Iceland, Ireland, Israel, Spain, Thailand and Japan, the geographical range of the etiological agent is suspected to be broad, especially where California red abalones Haliotis rufescens are cultured or in areas where native species have been exposed to this species. Susceptibility varies among species, with up to 99% losses of black abalone H. cracherodii in laboratory and field studies in the USA to no losses among the small abalone H. diversicolor supertexta in Thailand. Some populations that have suffered catastrophic losses due to WS have developed resistance to the disease. In addition, a newly identified phage hyperparasite of the WS-RLO may reduce pathogenicity and dampen associated losses. Diagnosis of WS requires the identification of infection with the pathogen (WS-RLO detected via in situ hybridization or histology coupled with PCR and sequence analysis) accompanied by morphological changes that characterize this disease (e.g. pedal and digestive gland atrophy, and digestive gland metaplasia). A quantitative PCR assay was developed and may be useful in quantifying pathogen DNA. Confirmation of infection cannot be done by PCR analysis alone but can be used as a proxy for infection in areas where the agent is established and is recommended for inclusion in health examinations. Avoidance of WS is best accomplished by the establishment of a health history and multiple health examinations prior to movement of animals.


Subject(s)
Gastropoda/microbiology , Rickettsia/isolation & purification , Animals , Host-Pathogen Interactions , Pacific Ocean
6.
Front Microbiol ; 5: 78, 2014.
Article in English | MEDLINE | ID: mdl-24672512

ABSTRACT

Black abalone, Haliotis cracherodii, populations along the NE Pacific ocean have declined due to the rickettsial disease withering syndrome (WS). Natural recovery on San Nicolas Island (SNI) of Southern California suggested the development of resistance in island populations. Experimental challenges in one treatment demonstrated that progeny of disease-selected black abalone from SNI survived better than did those from naïve black abalone from Carmel Point in mainland coastal central California. Unexpectedly, the presence of a newly observed bacteriophage infecting the WS rickettsia (WS-RLO) had strong effects on the survival of infected abalone. Specifically, presence of phage-infected RLO (RLOv) reduced the host response to infection, RLO infection loads, and associated mortality. These data suggest that the black abalone: WS-RLO relationship is evolving through dual host mechanisms of resistance to RLO infection in the digestive gland via tolerance to infection in the primary target tissue (the post-esophagus) coupled with reduced pathogenicity of the WS-RLO by phage infection, which effectively reduces the infection load in the primary target tissue by half. Sea surface temperature patterns off southern California, associated with a recent hiatus in global-scale ocean warming, do not appear to be a sufficient explanation for survival patterns in SNI black abalone. These data highlight the potential for natural recovery of abalone populations over time and that further understanding of mechanisms governing host-parasite relationships will better enable us to manage declining populations.

7.
Environ Toxicol Chem ; 29(4): 824-34, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20821511

ABSTRACT

Seasonal feeding behavior and high fidelity to feeding areas allow humpback whales (Megaptera novaeangliae) to be used as biological indicators of regional contamination. Biopsy blubber samples from male individuals (n = 67) were collected through SPLASH, a multinational research project, in eight North Pacific feeding grounds. Additional male samples (n = 20) were collected from one North Atlantic feeding ground. Persistent organic pollutants were measured in the samples and used to assess contaminant distribution in the study areas. North Atlantic (Gulf of Maine) whales were more contaminated than North Pacific whales, showing the highest levels of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and chlordanes. The highest dichlorodiphenyltrichloroethane (DDT) levels were detected in whales feeding off southern California, USA. High-latitude regions were characterized by elevated levels of hexachlorocyclohexanes (HCHs) but generally nondetectable concentrations of PBDEs. Age was shown to have a positive relationship with SigmaPCBs, SigmaDDTs, Sigmachlordanes, and total percent lipid. Contaminant levels in humpback whales were comparable to other mysticetes and lower than those found in odontocete cetaceans and pinnipeds. Although these concentrations likely do not represent a significant conservation threat, levels in the Gulf of Maine and southern California may warrant further study.


Subject(s)
Humpback Whale/metabolism , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Age Factors , Animals , Chlordan/analysis , DDT/analysis , Ecology , Halogenated Diphenyl Ethers/analysis , Hexachlorocyclohexane/analysis , Linear Models , Lipids/analysis , Polychlorinated Biphenyls/analysis
8.
Ecol Appl ; 19(6): 1645-59, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19769109

ABSTRACT

Over the past three decades, the decline and altered spatial distribution of the western stock of Steller sea lions (Eumetopias jubatus) in Alaska have been attributed to changes in the distribution or abundance of their prey due to the cumulative effects of fisheries and environmental perturbations. During this period, dietary prey occurrence and diet diversity were related to population decline within metapopulation regions of the western stock of Steller sea lions, suggesting that environmental conditions may be variable among regions. The objective of this study, therefore, was to examine regional differences in the spatial and temporal heterogeneity of oceanographic habitat used by Steller sea lions within the context of recent measures of diet diversity and population trajectories. Habitat use was assessed by deploying satellite-depth recorders and satellite relay data loggers on juvenile Steller sea lions (n = 45) over a five-year period (2000-2004) within four regions of the western stock, including the western, central, and eastern Aleutian Islands, and central Gulf of Alaska. Areas used by sea lions during summer months (June, July, and August) were demarcated using satellite telemetry data and characterized by environmental variables (sea surface temperature [SST] and chlorophyll a [chl a]), which possibly serve as proxies for environmental processes or prey. Spatial patterns of SST diversity and Steller sea lion population trends among regions were fairly consistent with trends reported for diet studies, possibly indicating a link between environmental diversity, prey diversity, and distribution or abundance of Steller sea lions. Overall, maximum spatial heterogeneity coupled with minimal temporal variability of SST appeared to be beneficial for Steller sea lions. In contrast, these patterns were not consistent for chl a, and there appeared to be an ecological threshold. Understanding how Steller sea lions respond to measures of environmental heterogeneity will ultimately be useful for implementing ecosystem management approaches and developing additional conservation strategies.


Subject(s)
Chlorophyll/analysis , Ecosystem , Sea Lions , Seawater/analysis , Temperature , Alaska , Animals , Chlorophyll A , Diet , Phytoplankton , Population Dynamics , Time Factors
9.
Zoology (Jena) ; 107(1): 3-11, 2004.
Article in English | MEDLINE | ID: mdl-16351924

ABSTRACT

Quantifying animal movement in response to a spatially and temporally heterogeneous environment is critical to understanding the structural and functional landscape influences on population viability. Generalities of landscape structure can easily be extended to the marine environment, as marine predators inhabit a patchy, dynamic system, which influences animal choice and behavior. An innovative use of the fractal measure of complexity, indexing the linearity of movement paths over replicate temporal scales, was applied to satellite tracking data collected from narwhals (Monodon monoceros) (n = 20) in West Greenland and the eastern Canadian high Arctic. Daily movements of individuals were obtained using polar orbiting satellites via the ARGOS data location and collection system. Geographic positions were filtered to obtain a daily good quality position for each whale. The length of total pathway was measured over seven different temporal length scales (step lengths), ranging from one day to one week, and a seasonal mean was calculated. Fractal dimension (D) was significantly different between seasons, highest during summer (D = 1.61, SE 0.04) and winter (D = 1.69, SE 0.06) when whales made convoluted movements in focal areas. Fractal dimension was lowest during fall (D = 1.34, SE 0.03) when whales were migrating south ahead of the forming sea ice. There were no significant effects of size category or sex on fractal dimension by season. The greater linearity of movement during the migration period suggests individuals do not intensively forage on patchy resources until they arrive at summer or winter sites. The highly convoluted movements observed during summer and winter suggest foraging or searching efforts in localized areas. Significant differences between the fractal dimensions on two separate wintering grounds in Baffin Bay suggest differential movement patterns in response to the dynamics of sea ice.

SELECTION OF CITATIONS
SEARCH DETAIL
...