Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Surg ; 24(1): 110, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622597

ABSTRACT

BACKGROUND: The reporting of surgical instrument errors historically relies on cumbersome, non-automated, human-dependent, data entry into a computer database that is not integrated into the electronic medical record. The limitations of these reporting systems make it difficult to accurately estimate the negative impact of surgical instrument errors on operating room efficiencies. We set out to determine the impact of surgical instrument errors on a two-hospital healthcare campus using independent observers trained in the identification of Surgical Instrument Errors. METHODS: This study was conducted in the 7 pediatric ORs at an academic healthcare campus. Direct observations were conducted over the summer of 2021 in the 7 pediatric ORs by 24 trained student observers during elective OR days. Surgical service line, error type, case type (inpatient or outpatient), and associated length of delay were recorded. RESULTS: There were 236 observed errors affecting 147 individual surgical cases. The three most common errors were Missing+ (n = 160), Broken/poorly functioning instruments (n = 44), and Tray+ (n = 13). Errors arising from failures in visualization (i.e. inspection, identification, function) accounted for 88.6% of all errors (Missing+/Broken/Bioburden). Significantly more inpatient cases (42.73%) had errors than outpatient cases (22.32%) (p = 0.0129). For cases in which data was collected on whether an error caused a delay (103), over 50% of both IP and OP cases experienced a delay. The average length of delays per case was 10.16 min. The annual lost charges in dollars for surgical instrument associated delays in chargeable minutes was estimated to be between $6,751,058.06 and $9,421,590.11. CONCLUSIONS: These data indicate that elimination of surgical instrument errors should be a major target of waste reduction. Most observed errors (88.6%) have to do with failures in the visualization required to identify, determine functionality, detect the presence of bioburden, and assemble instruments into the correct trays. To reduce these errors and associated waste, technological advances in instrument identification, inspection, and assembly will need to be made and applied to the process of sterile processing.


Subject(s)
Operating Rooms , Surgical Instruments , Humans , Child , Hospitals
2.
Cancers (Basel) ; 13(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919802

ABSTRACT

Gastroenteropancreatic neuroendocrine tumors (GEP-NET) account for roughly 60% of all neuroendocrine tumors. Low/intermediate grade human GEP-NETs have relatively low proliferation rates that animal models and cell lines fail to recapitulate. Short-term patient-derived cancer organoids (PDCOs) are a 3D model system that holds great promise for recapitulating well-differentiated human GEP-NETs. However, traditional measurements of drug response (i.e., growth, proliferation) are not effective in GEP-NET PDCOs due to the small volume of tissue and low proliferation rates that are characteristic of the disease. Here, we test a label-free, non-destructive optical metabolic imaging (OMI) method to measure drug response in live GEP-NET PDCOs. OMI captures the fluorescence lifetime and intensity of endogenous metabolic cofactors NAD(P)H and FAD. OMI has previously provided accurate predictions of drug response on a single cell level in other cancer types, but this is the first study to apply OMI to GEP-NETs. OMI tested the response to novel drug combination on GEP-NET PDCOs, specifically ABT263 (navitoclax), a Bcl-2 family inhibitor, and everolimus, a standard GEP-NET treatment that inhibits mTOR. Treatment response to ABT263, everolimus, and the combination were tested in GEP-NET PDCO lines derived from seven patients, using two-photon OMI. OMI measured a response to the combination treatment in 5 PDCO lines, at 72 h post-treatment. In one of the non-responsive PDCO lines, heterogeneous response was identified with two distinct subpopulations of cell metabolism. Overall, this work shows that OMI provides single-cell metabolic measurements of drug response in PDCOs to guide drug development for GEP-NET patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...