Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 69(7): 2734-8, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19293179

ABSTRACT

Chromosomal rearrangements account for all erythroblast transformation-specific (ETS) family member gene fusions that have been reported in prostate cancer and have clinical, diagnostic, and prognostic implications. Androgen-regulated genes account for the majority of the 5' genomic regulatory promoter elements fused with ETS genes. TMPRSS2-ERG, TMPRSS2-ETV1, and SLC45A3-ERG rearrangements account for roughly 90% of ETS fusion prostate cancer. ELK4, another ETS family member, is androgen regulated, involved in promoting cell growth, and highly expressed in a subset of prostate cancer, yet the mechanism of ELK4 overexpression is unknown. In this study, we identified a novel ETS family fusion transcript, SLC45A3-ELK4, and found it to be expressed in both benign prostate tissue and prostate cancer. We found high levels of SLC45A3-ELK4 mRNA restricted to a subset of prostate cancer samples. SLC45A3-ELK4 transcript can be detected at high levels in urine samples from men at risk for prostate cancer. Characterization of the fusion mRNA revealed a major variant in which SLC45A3 exon 1 is fused to ELK4 exon 2. Based on quantitative PCR analyses of DNA, unlike other ETS fusions described in prostate cancer, the expression of SLC45A3-ELK4 mRNA is not exclusive to cases harboring a chromosomal rearrangement. Treatment of LNCaP cancer cells with a synthetic androgen (R1881) revealed that SLC45A3-ELK4, and not endogenous ELK4, mRNA expression is androgen regulated. Altogether, our findings show that SLC45A3-ELK4 mRNA expression is heterogeneous, highly induced in a subset of prostate cancers, androgen regulated, and most commonly occurs through a mechanism other than chromosomal rearrangement (e.g., trans-splicing).


Subject(s)
Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/genetics , RNA, Messenger/genetics , Cell Line, Tumor , Chromosome Deletion , Chromosomes, Human, Pair 1 , Gene Expression Regulation, Neoplastic/drug effects , Humans , In Situ Hybridization, Fluorescence , Male , Metribolone/pharmacology , Oncogene Proteins, Fusion/biosynthesis , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-ets/biosynthesis , Proto-Oncogene Proteins c-ets/genetics , RNA, Messenger/biosynthesis , Testosterone Congeners/pharmacology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...