Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Genes Evol ; 210(1): 2-10, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10603080

ABSTRACT

The echinoderm microtubule-associated protein (EMAP) is the most abundant microtubule-binding protein in the first cleavage mitotic apparatus in sea urchin embryos. The first goal of this study was to determine whether there is sufficient EMAP in the egg and embryo to modify microtubule dynamics during the early cleavages divisions and whether EMAP functions at a specific time or place in the embryo. To accomplish this goal, we examined the relative abundance, tissue distribution, and temporal pattern of EMAP expression during embryonic development. The second goal of this study was to identify important functional domains within the EMAP coding sequence. A conserved sequence might reveal a potential microtubule-binding domain. We cloned, sequenced and compared overlapping EMAP cDNAs from two different sea urchin species that diverged approximately 80 million years ago, and compared these with cDNA sequences from a vertebrate and nematode species. From quantitative immunoblots, we determined the EMAP concentration in eggs to be 4 microM. The steady-state levels of EMAP mRNA and protein accumulated during development, and all three germ layers expressed EMAP. During the early stages of development, EMAP and tubulin were both abundant in the ectoderm, mesoderm and endoderm. However, during late gastrulation and the formation of the early pluteus larvae, EMAP was enriched in the mesoderm, while tubulin staining was most abundant in the archenteron. These results indicate that EMAP may have tissue-specific functions in the late stage embryo. To identify conserved functional domains, we compared the predicted amino acid sequence encoded by Strongylocentrotus purpuratus and Lytechinus variegatus EMAP cDNAs, and determined that these two sea urchin EMAPs were 95% conserved and shared an identical domain organization. A parsimonious analysis of these sea urchin protein sequences, as well as human and C. elegans EMAP sequences was used to construct a gene tree. Together these results suggest that EMAP is an important microtubule protein required at all developmental stages of sea urchins, and whose cellular function may be conserved amongst metazoans.


Subject(s)
Conserved Sequence , Evolution, Molecular , Microtubule-Associated Proteins/genetics , Amino Acid Sequence , Animals , Caenorhabditis elegans , Humans , Molecular Sequence Data , Repetitive Sequences, Amino Acid , Sea Urchins , Sequence Alignment
2.
Dev Biol ; 193(1): 90-9, 1998 Jan 01.
Article in English | MEDLINE | ID: mdl-9466890

ABSTRACT

The egg activation process functions to implement developmental programs that act much later in embryogenesis. One example of this is the fact that application of protein tyrosine kinase inhibitors to the fertilized sea urchin egg for a 15-min period results in a defect in the gastrulation process occurring over 24 h later (Kinsey, W. H., Dev. Biol. 172, 704-707, 1995). In the present study, we show that the window of sensitivity is not due to differential uptake of inhibitor, and establish that the inhibitor inhibits tyrosine kinase activity at the time of application. We also demonstrate that inhibition of protein tyrosine kinase activity in the zygote causes a specific defect in the morphogenetic movements associated with gastrulation without interfering with the initial specification and differentiation of endoderm and mesoderm. Differentiation events occurring concurrent with or subsequent to gastrulation were also suppressed in embryos derived from treated zygotes. These findings indicate that fertilization initiates a signaling cascade involving protein tyrosine kinase activity that is required specifically for events at gastrulation. This signaling event is required to complete the developmental program of both endoderm and mesoderm, but is different from those events necessary for initial specification of endodermal and mesodermal cell fate.


Subject(s)
Endoderm/cytology , Extracellular Matrix Proteins , Fertilization/physiology , Gastrula/physiology , Mesoderm/cytology , Protein-Tyrosine Kinases/physiology , Animals , Cell Differentiation , Cytoskeletal Proteins/analysis , Enzyme Inhibitors , Gastrula/chemistry , Gastrula/enzymology , Genistein/pharmacology , Glycoproteins/analysis , Ovum/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , RNA, Messenger/analysis , Sea Urchins , Signal Transduction/physiology , Zygote/enzymology , Zygote/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...