Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Mater ; 31(7): e1806341, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30589119

ABSTRACT

Manipulation of light below the diffraction limit forms the basis of nanophotonics. Metals can confine light at the subwavelength scale but suffer from high loss of energy. Recent reports have theoretically demonstrated the possibility of light confinement below the diffraction limit using transparent dielectric metamaterials. Here, nanoscale light confinement (<λ/20) in transparent dielectric materials is shown experimentally through a luminescent nanosystem with rationally designed dielectric claddings. Theoretically, green light with a wavelength of 540 nm has a transmission of 98.8% when passing through an ultrathin NaYF4 /NaGdF4 superlattice cladding (thickness: 6.9 nm). Unexpectedly, the complete confinement of green emission (540 nm) by such an ultrathin dielectric cladding is directly observed. FDTD calculations are used to confirm that the ultrathin dielectric cladding has negligible influence on the transmission of propagating light, but extraordinary confinement of evanescent waves. This will provide new opportunities for nanophotonics by completely averting the use of metals.

2.
Adv Mater ; 30(46): e1804450, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30295967

ABSTRACT

The sensitive detection of X-rays embodies an important research area, being motivated by a common desire to minimize the radiation doses required for detection. Among metal halide perovskites, the double-perovskite Cs2 AgBiBr6 system has emerged as a promising candidate for the detection of X-rays, capable of high X-ray stability and sensitivity (105 µC Gy-1 cm-2 ). Herein, the important photophysical pathways in single-crystal Cs2 AgBiBr6 are detailed at both room (RT) and liquid-nitrogen (LN2 T) temperatures, with emphasis made toward understanding the carrier dynamics that influence X-ray sensitivity. This study draws upon several optical probes and an RT excitation model is developed which is far from optimal, being plagued by a large trap density and fast free-carrier recombination pathways. Substantially improved operating conditions are revealed at 77 K, with a long fundamental carrier lifetime (>1.5 µs) and a marked depopulation of parasitic recombination pathways. The temperature dependence of a single-crystal Cs2 AgBiBr6 X-ray detecting device is characterized and a strong and monotonic enhancement to the X-ray sensitivity upon cooling is demonstrated, moving from 316 µC Gy-1 cm-2 at RT to 988 µC Gy-1 cm-2 near LN2 T. It is concluded that even modest cooling-via a Peltier device-will facilitate a substantial enhancement in device performance, ultimately lowering the radiation doses required.

3.
ACS Nano ; 12(8): 8081-8090, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30086242

ABSTRACT

The room-temperature charge carrier mobility and excitation-emission properties of metal halide perovskites are governed by their electronic band structures and intrinsic lattice phonon scattering mechanisms. Establishing how charge carriers interact within this scenario will have far-reaching consequences for developing high-efficiency materials for optoelectronic applications. Herein we evaluate the charge carrier scattering properties and conduction band environment of the double perovskite Cs2AgBiBr6 via a combinatorial approach; single crystal X-ray diffraction, optical excitation and temperature-dependent emission spectroscopy, resonant and nonresonant Raman scattering, further supported by first-principles calculations. We identify deep conduction band energy levels and that scattering from longitudinal optical phonons- via the Fröhlich interaction-dominates electron scattering at room temperature, manifesting within the nominally nonresonant Raman spectrum as multiphonon processes up to the fourth order. A Fröhlich coupling constant nearing 230 meV is inferred from a temperature-dependent emission line width analysis and is found to be extremely large compared to popular lead halide perovskites (between 40 and 60 meV), highlighting the fundamentally different nature of the two "single" and "double" perovskite materials branches.

4.
Nat Commun ; 8(1): 1880, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29192211

ABSTRACT

Nematic order often breaks the tetragonal symmetry of iron-based superconductors. It arises from regular structural transition or electronic instability in the normal phase. Here, we report the observation of a nematic superconducting state, by measuring the angular dependence of the in-plane and out-of-plane magnetoresistivity of Ba0.5K0.5Fe2As2 single crystals. We find large twofold oscillations in the vicinity of the superconducting transition, when the direction of applied magnetic field is rotated within the basal plane. To avoid the influences from sample geometry or current flow direction, the sample was designed as Corbino-shape for in-plane and mesa-shape for out-of-plane measurements. Theoretical analysis shows that the nematic superconductivity arises from the weak mixture of the quasi-degenerate s-wave and d-wave components of the superconducting condensate, most probably induced by a weak anisotropy of stresses inherent to single crystals.

5.
ACS Nano ; 11(11): 11746-11754, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29125286

ABSTRACT

In the presence of disorder, superconductivity exhibits short-range characteristics linked to localized Cooper pairs which are responsible for anomalous phase transitions and the emergence of quantum states such as the bosonic insulating state. Complementary to well-studied homogeneously disordered superconductors, superconductor-normal hybrid arrays provide tunable realizations of the degree of granular disorder for studying anomalous quantum phase transitions. Here, we investigate the superconductor-bosonic dirty metal transition in disordered nanodiamond arrays as a function of the dispersion of intergrain spacing, which ranges from angstroms to micrometers. By monitoring the evolved superconducting gaps and diminished coherence peaks in the single-quasiparticle density of states, we link the destruction of the superconducting state and the emergence of bosonic dirty metallic state to breaking of the global phase coherence and persistence of the localized Cooper pairs. The observed resistive bosonic phase transitions are well modeled using a series-parallel circuit in the framework of bosonic confinement and coherence.

6.
ACS Nano ; 11(6): 5358-5366, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28511000

ABSTRACT

Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature Tc ∼ 3 K and a Curie temperature TCurie > 400 K. In spite of the high TCurie, our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

7.
Nat Commun ; 6: 7614, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26139568

ABSTRACT

The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

8.
Rev Sci Instrum ; 86(6): 064701, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26133852

ABSTRACT

A radio-frequency coil for the experimental investigation of the magnetic properties of thin superconducting films under microwave fields at different values of temperature and dc magnetic field has been developed. The system has been used for low-temperature microwave frequency-dependent magnetization measurements in a Pb thin film with an engineered periodical antidot array. The characteristic frequencies and the electric and magnetic fields of the resonant system formed by a multi-turn coil with a sample loaded in its core are estimated using the helical approach. A good agreement of the calculated values with those recorded in swept-frequency spectra is obtained. The relation between the characteristics of the resonant structure and the frequency-driven magnetic response of the sample at different nominal microwave powers documents the capability and sensitivity of the layout.

9.
Adv Mater ; 26(13): 2034-40, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24343908

ABSTRACT

Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.

10.
Phys Rev Lett ; 110(7): 077001, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-25166395

ABSTRACT

In a variety of superconductors, mostly in two-dimensional (2D) and one-dimensional (1D) systems, the resistive superconducting transition R(T) demonstrates in many cases an anomalous narrow R(T) peak just preceding the onset of the superconducting state R=0 at T(c). The amplitude of this R(T) peak in 1D and 2D systems ranges from a few up to several hundred percent. In three-dimensional (3D) systems, however, the R(T) peak close to T(c) is rarely observed, and it reaches only a few percent in amplitude. Here we report on the observation of a giant (∼1600%) and very narrow (∼1 K) resistance peak preceding the onset of superconductivity in heavily boron-doped diamond. This anomalous R(T) peak in a 3D system is interpreted in the framework of an empirical model based on the metal-bosonic insulator-superconductor transitions induced by a granularity-correlated disorder in heavily doped diamond.

12.
Chem Commun (Camb) ; (1): 47-9, 2009 Jan 07.
Article in English | MEDLINE | ID: mdl-19081994

ABSTRACT

Magnetohydrodynamic nanoparticle dispersion is an energy efficient method to deaggregate nanoparticles, combining hydrodynamic forces of turbulent flow with Lorentz forces generated by a magnetic field.


Subject(s)
Nanoparticles/chemistry , Electromagnetic Fields , Models, Chemical , Particle Size , Reproducibility of Results , Silica Gel , Silicon Dioxide , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...